La condición de la cadena ascendente (ACC por sus siglas en inglés) y la condición de la cadena descendente (DCC) son propiedades de finitud satisfechas por algunas estructuras algebraicas, principalmente, ideales en ciertos anillos conmutativos. Estas condiciones jugaron un papel importante en el desarrollo de la teoría de la estructura de anillos conmutativos en los trabajos de David Hilbert, Emmy Noether, y Emil Artin. Las condiciones, por sí mismas, pueden ser formuladas de manera abstracta, de modo que sean aplicables a cualquier conjunto parcialmente ordenado. Este punto de vista es útil en la teoría de dimensión algebraica abstracta de Gabriel y Rentschler.
Un conjunto parcialmente ordenado (o poset) P se dice que satisface la condición de la cadena ascendente (ACC) si ninguna cadena ascendente de elementos puede prolongarse indefinidamente. Equivalentemente, dada cualquier secuencia de elementos de P
existe un entero positivo n tal que
Análogamente, se dice que P satisface la condición de la cadena descendente (DCC) si toda cadena descendente tiene siempre un último elemento. O, equivalentemente, para cada secuencia descendente
existe un entero positivo n tal que
Escribe un comentario o lo que quieras sobre Condición de la cadena ascendente (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)