En matemática, un cuerpo de números algebraicos (o simplemente cuerpo numérico) F es una extensión de cuerpos finita (y también algebraica) de los números racionales Q. Así pues, F es un cuerpo que contiene Q y tiene dimensión finita cuando es considerado como un espacio vectorial sobre Q.
El estudio de los cuerpos de números algebraicos, y, más generalmente, de las extensiones algebraicas de los números racionales, es el tema central de la teoría de números algebraicos.
La noción de cuerpo de los números algebraicos se basa en el concepto de un cuerpo. Los cuerpos consisten en un conjunto de elementos, junto con las cuatro operaciones principales, definidas como adición, substracción, multiplicación y división por elementos distintos de 0. Un ejemplo muy común de cuerpo es el cuerpo de los números racionales, comúnmente denotados por Q, junto con sus operaciones usuales de suma, etc.
Otra noción necesaria para definir los cuerpos de los números algebraicos es el de espacio vectorial. En la medida necesaria, los espacios vectoriales pueden ser considerados como secuencias (o tuplas)
cuyas partes constituyentes son elementos de un cuerpo fijado, como puede ser el cuerpo Q. Cualquier par de estas secuencias puede ser sumada mediante la suma de las partes constituyentes una a una. Además, cualquiera de estas secuencias puede ser multiplicada por un elemento c de un cuerpo fijado. Estas dos operaciones son conocidas como suma de vectores y multiplicación escalar satisfaciendo un número de propiedades que sirven para definir los espacios vectoriales abstractamente. Los espacios vectoriales también pueden ser de «dimensión infinita», o lo que es lo mismo, que las secuencias constituyentes de estos espacios vectoriales tienen longitud infinita. Sin embargo, si el espacio vectorial consiste en un grupo de secuencias finitas
el espacio vectorial se dice que tiene una dimensión finita, n.
Un cuerpo de números algebraicos (o simplemente cuerpo numérico) es por definición un grado finito de extensión de cuerpos del cuerpo de los números racionales. este grado de extensión de Q es simplemente llamado como grado.
Escribe un comentario o lo que quieras sobre Cuerpo numérico (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)