El número de coordenadas independientes (escalares) necesarias para determinar simultáneamente la posición de cada partícula en un sistema dinámico es llamado el número de grados de libertad del sistema. El concepto aparece en mecánica clásica y en termodinámica.
Una partícula en el espacio tiene 3 grados de libertad[cita requerida]. El espacio de fases asociado a ese movimiento se constituye con 3 ejes referentes a su posición (x,y,z) y otros tres asociados a sus respectivos momentos (px,py,pz). En el plano posee 2 grados de libertad y 4 ejes en el espacio de fases[cita requerida]. Cada magnitud del espacio representa una variable a calcular para obtener el estado dinámico del sistema.
El número de grados de libertad de un sistema cuando existen ligaduras entre las partículas, será el número de grados de libertad del sistema sin ligaduras, menos el número de ligaduras que relacionan las variables.
Obsérvese que esta definición no coincide ni con la definición de grados de libertad que se usa en ingeniería de máquinas, ni con la que se usa en ingeniería estructural.
En mecánica hamiltoniana el número de grados de libertad de un sistema coincide con la dimensión topológica del espacio de fases del sistema. En mecánica lagrangiana el número de grados de libertad coincide la dimensión del fibrado tangente del espacio de configuración del sistema.
Un conjunto de N partículas intereactuantes pero moviéndose sin restricciones en el espacio tridimensional tiene 3N grados de libertad. Si el conjunto de partículas se mueve sobre un estado d-dimensional el número de grados de libertad es 2d·N.
Si existen ligaduras entre las partículas el número de grados de libertad será:
Una partícula libre tiene 3 grados de libertad, 1 por cada dimensión en la que se puede mover.
La superficie supone una ligadura para las posiciones, ya que debe cumplirse
y otra para las velocidades, ya que la velocidad debe ser en todo momento tangente a la superficie, por lo que
por tanto el número de grados de libertad es
valor que coincide con lo que se espera para un movimiento en una variedad bidimensional.
Por tener dos partículas tenemos 12 grados de libertad, pero la condición de que la distancia entre las partículas sea fijada supone una ligadura para sus posiciones y otra para sus velocidades, lo que nos da
Estos grados de libertad se pueden representar por variables diferentes (las tres coordenadas del centro de la varilla y los dos ángulos que dan la orientación de ésta, con sus correspondientes velocidades).
En mecánica se reconocen dos tipos de sólido rígido: los que están compuestos de una distribución de masa continua y los formados por masas puntuales unidas por enlaces rígidos.
No es difícil calcular el número de grados de libertad de un sólido rígido de masa continua; el número de grados de libertad es 6, 3 coordenadas necesarias para localizar el centro de masa del sistema y 3 más para describir su orientación.
Para un sólido constituido por partículas se debe considerar que en principio cada una posee 3 grados de libertad. Se deben considerar también
ecuaciones de constricción debidas a que la distancia entre las partículas es fija. Si nosotros elegimos ahora tres partículas para generar un plano, la línea que une sus centros de masa es un posible eje de rotación para el sistema. Con lo que debemos sumar el número de pares que se pueden hacer de un conjunto de partículas
.
Con lo que el número de grados de libertad para este sólido es:
.
En general, no todas las ligaduras pueden representarse mediante una reducción en el número de variables (aunque sí en el número de variables independientes). Cuando tenemos un sistema en el cual las ligaduras no son integrables, se dice que el sistema es no holónomo.
Es importante señalar que la convención para contabilizar los grados de libertad en ingeniería mecánica es diferente, siendo justamente la mitad que en los casos ( ) y ( ).
En el límite clásico de la mecánica estadística la energía de un sistema en equilibrio térmico con n grados de libertad cuadráticos e independientes es:
Donde:
Escribe un comentario o lo que quieras sobre Grado de libertad (física) (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)