x
1

Historia de la Relatividad Especial



La teoría de la relatividad surge para resolver varios problemas con las teorías aceptadas al principio del siglo XX.

A partir de 1861, Maxwell establece las ecuaciones que describen las ondas electromagnéticas y, en particular, las ondas luminosas. Según esta teoría la velocidad de la luz solo debía depender de las propiedades eléctricas y magnéticas del medio y no de la velocidad del sistema de referencia de las medidas, lo que planteaba un problema. En efecto, en la mecánica newtoniana, las velocidades son aditivas (se suman, para decirlo de forma simple). Si de un cohete que se desplaza a la velocidad de 7 km/s con relación a la Tierra se lanza una bola de cañón hacia el frente a la velocidad de 1 km/s con relación al cohete, la velocidad del proyectil con relación a la Tierra será de 8 km/s. Si la bola se lanzara en sentido contrario, su velocidad sería de 6 km/s.

Las ecuaciones de Maxwell dicen que si se emite un haz luminoso desde el cohete hacia el frente o hacia la parte de atrás, la velocidad de la luz medida sobre la Tierra será la misma. La experiencia conducida por Michelson y Morley en 1887, con la propia Tierra desempeñando el papel del cohete, confirmó este hecho. Como nuestro planeta se desplaza en torno al Sol a la velocidad de 30 km/s, querían ver si podían poner de relieve una diferencia de la velocidad de la luz entre la dirección del movimiento de revolución y la dirección perpendicular. Al no obtenerse el patrón de interferencia luminosa, se confirmó la teoría de Maxwell y se cuestionó la existencia del éter que se suponía era el medio en el que se propagaban las ondas electromagnéticas y la luz.

Los estudios de Ernst Mach sobre la mecánica y la inercia también tuvieron impacto en Einstein. Dado que Mach creía solamente en cantidades que se pudiesen tocar, afirmó que el «tiempo» no tiene ningún significado real. Escribió que era una idea abstracta, producto de la mente humana y sujeta por lo tanto a sus caprichos. Este rechazo del «tiempo absoluto» parece que liberó el pensamiento del joven Einstein; apoyaba directamente en el concepto de que no existe ni tiempo ni espacio absoluto. Leyó a Ernst Mach cuando era estudiante y se reunía regularmente con sus amigos Conrad Habicht y Maurice Solovine. Einstein insistió para que el grupo leyese los dos libros que Mach había publicado hasta esa fecha: El desarrollo de la mecánica, (Die Mechanik in ihrer Entwicklung, Leipzig, 1883) y El análisis de las sensaciones (Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen, Jena, 1886). Einstein siempre creyó que Mach había estado en el camino correcto para descubrir la relatividad en parte de sus trabajos de juventud, y que la única razón por la que no lo había hecho fue porque la época no fue la propicia. El gran logro de Einstein fue generalizar la idea de Ernst Mach y probar que todas las fuerzas -y no solo las centrífugas- son relativas, que todos los fenómenos mecánicos pueden ser explicados en términos de movimiento relativo. Para ello, tuvo que dar una nueva teoría de la gravitación, con la que consiguió explicar ciertos movimientos planetarios que la mecánica clásica no lograba interpretar.[1]

Para intentar explicar los resultados del experimento de Michelson y Morley, Hendrik Lorentz sugirió en 1895 unas nuevas fórmulas de transformación para pasar de un sistema de referencia a otro; se trataba de unas ecuaciones para hacer compatible la constancia de la velocidad de la luz, pero que carecían de una significación clara. Así, supuso una teoría del éter en la cual objetos y observadores viajarían a través de un éter estacionario, sufriendo un acortamiento físico (hipótesis de contracción de Lorentz) y un cambio en el paso del tiempo (dilatación del tiempo). La explicación de Lorentz suministraba una reconciliación parcial entre la física newtoniana y el electromagnetismo, que se conjugaban aplicando la transformación de Lorentz, que vendría a sustituir a la transformación de Galileo vigente en el sistema newtoniano.

La formulación del electromagnetismo frente a las transformaciones de Lorentz fue también estudiada por el físico francés Henri Poincaré. Cuando las velocidades involucradas son mucho menores que c (la velocidad de la luz), las leyes resultantes son en la práctica las mismas que en la teoría de Newton, y las transformaciones se reducen a las de Galileo. De cualquier forma, la teoría del éter fue criticada incluso por el mismo Lorentz debido a su naturaleza ad hoc.

1° Il n'y a pas d'espace absolu et nous ne concevons que des mouvements relatifs; cependant on énonce le plus souvent les faits mécaniques comme s'il y avait un espace absolu auquel on pourrait les rapporter;

2° Il n'y a pas de temps absolu; dire que deux durées sont égales, c'est une assertion qui n'a par elle-même aucun sens et qui n'en peut acquérir un que par convention;

3° Non seulement nous n'avons intuition directe de l'égalité de deux durées, mais nous n'avons même pas celle de la simultanéité de deux événements qui se produisent sur des théâtres différents; c'est ce que j'ai expliqué dans un article intitulé la «Mesure du temps», Revue de Métaphysique et de Morale, t.~VI, p.~1--13 (janvier 1898); voir aussi la Valeur de la Science, chapitre II.;

1° No hay espacio absoluto, y solo conciben de movimiento relativo, y sin embargo, en la mayoría de los casos son mecánicos hechos enunciados como si hubiera un espacio absoluto a los cuales pueden ser remitidos.

2º No hay tiempo absoluto. Cuando decimos que dos períodos son iguales, la declaración no tiene ningún significado, y solo puede adquirir un significado por una convención.

3° No solo porque no tenemos la intuición directa de la igualdad de los dos períodos, pero ni siquiera hemos directa intuición de la simultaneidad de dos hechos ocurridos en dos lugares diferentes. He explicado esto en un artículo titulado «Mesure del temps».

En septiembre de 1905, Albert Einstein publicó su artículo «Elektrodynamik» [Ein05c]. Einstein deriva las ecuaciones de Lorentz basándose en su Principio de la relatividad y la constancia de la velocidad de la luz, sin asumir la presencia de un éter. (Debido a que el éter no se utiliza en la derivación, muchos físicos hacen uso de la navaja de Ockham para eliminarlo por completo, ya que, como con la formulación de Poincaré, no puede detectarse en cualquier caso una velocidad uniforme relativa al éter). Einstein quería saber que permanecía invariante para todos los observadores.[cita requerida] El título original de Einstein del documento se traduce del alemán como Sobre la electrodinámica de los cuerpos en movimiento. Max Planck sugirió el término «relatividad» para resaltar la idea de la transformación de las leyes de la Física entre observadores en movimiento relativo entre sí. El término 'especial' fue dada por Einstein más tarde con el fin de distinguirla de la teoría general de la relatividad.

El artículo de Einstein no contiene referencias a otros de la literatura. Sí hace mención a Lorentz, pero solo en el punto 9, parte II, en relación con el tratamiento de los campos electromagnéticos. Poincaré no se menciona.

En noviembre de 1905 su documento «¿Depende la inercia de un cuerpo de su contenido energético?» (Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?) fue publicado en Annalen der Physik [Ein05d]. Einstein fue el primero en sugerir que cuando un cuerpo material pierde una energía (ya sea por transmisión de calor o por radiación), su masa se reduce en la cantidad (generalizando la idea de la equivalencia masa - energía del «fluido ficticio» propuesto por Poincaré). Esto dio lugar a la famosa fórmula de equivalencia masa - energía . Einstein consideró muy importante la ecuación de equivalencia ya que demostraba que una partícula con masa posee una energía, la «energía en reposo», distinta de la energía cinética y energía potencial clásicas.

Teoría de la relatividad



Escribe un comentario o lo que quieras sobre Historia de la Relatividad Especial (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!