En matemáticas, un módulo es una de las estructuras algebraicas fundamentales usadas en álgebra abstracta. Un módulo sobre un anillo es una generalización de la noción de espacio vectorial sobre un cuerpo, donde los correspondientes escalares son los elementos un anillo (con identidad) arbitrario y donde está definida una multiplicación (a la izquierda y/o a la derecha) entre elementos del anillo y elementos del módulo.
Los módulos están estrechamente relacionados con la teoría de representación de grupos. Son una de las nociones centrales del álgebra conmutativa y del álgebra homológica y se usan en la geometría algebraica y la topología algebraica.
Sea un anillo con identidad y sea su identidad multiplicativa. Un -módulo izquierdo de es un grupo abeliano y una operación tal que para cualesquiera , , se tiene
Generalmente, se escribe simplemente "un -módulo izquierdo " o .
Algunos autores[cita requerida] omiten la condición 4 en la definición general de módulos izquierdos, y llaman a las estructuras definidas antes "módulos izquierdos unitales". En este artículo sin embargo, todos los módulos (y todos los anillos) se presuponen unitales. Por lo general, para módulos, en la mayoría de los textos se considera la condición 4, mientras que para anillos no se supone que exista elemento unidad, excepto que se diga lo contrario.
Un -módulo derecho de o se define de forma semejante, sólo que el anillo actúa por la derecha, es decir se tiene una multiplicación escalar de la forma , y los tres axiomas antedichos se escriben con los escalares y a la derecha de e .
Si R es conmutativo, entonces los R-módulos a la izquierda son lo mismo que R-módulos a la derecha y se llaman simplemente R-módulos.
Suponga que M es un R-módulo izquierdo y N es un subgrupo de M. Entonces N es un submódulo (o R-submódulo, para ser más explícito) si, para cualquier n en N y cualquier r en R, el producto rn está en N (o el nr para un módulo derecho). Si M y N son R - módulos, entonces una función f: M → N es un homomorfismo de R - módulos si, para cualquier m, n en M y r, s en R,
Esto, como cualquier homomorfismo de objetos matemáticos, es precisamente una función que preserva la estructura de los objetos. Un homomorfismo biyectivo de módulos es un isomorfismo de módulos, y los dos módulos se llaman isomorfos. Dos módulos isomorfos son idénticos para todos los propósitos prácticos, diferenciándose solamente en la notación para sus elementos.
El núcleo de un homomorfismo de módulos f: M → N es el submódulo de M que consiste en todos los elementos que son enviados a cero por f. Los teoremas de isomorfía familiares de grupos abelianos y de espacios vectoriales son también válidos para R-módulos.
Los R-módulos izquierdos, junto con sus homomorfismos de módulo, forman una categoría, escrita como RMod. Esta es una categoría abeliana.
Finitamente generado. Un módulo M es finitamente generado si existe un número finito de elementos x1..., xn en M tales que cada elemento de M es una combinación lineal de esos elementos con coeficientes del anillo escalar R.
Libre. Un módulo libre es un módulo que tiene una base libre, o equivalentemente, uno que es isomorfo a una suma directa de copias del anillo escalar R. Estos son los módulos que se comportan parecido a los espacios vectoriales.
Proyectivo. Los módulos proyectivos son sumandos directos de módulos libres y comparten muchas de sus propiedades deseables.
Inyectivo. Los módulos inyectivos se definen dualmente a los módulos proyectivos.
Simple. Un módulo simple S es un módulo que no es {0} cuyos únicos submódulos son {0} y S. Los módulos simples a veces se llaman irreducibles.
Indescomponible. Un módulo indescomponible es un módulo diferente a cero que no se puede escribir como una suma directa de dos submódulos diferentes a cero. Cada módulo simple es indescomponible.
Fiel. Un módulo fiel M es uno donde la acción de cada r (distinto de cero) en R es no trivial (es decir, existe algún m en M tal que rm ≠ 0). Equivalente, el anulador de M es el ideal cero.
Noetheriano. Un módulo noetheriano es un módulo tal que cada submódulo es finitamente generado. Equivalente, cada cadena creciente de submódulos llega a ser estacionaria en finitos pasos.
Artiniano. Un módulo artiniano es un módulo en el cual cada cadena decreciente de submódulos llega a ser estacionaria en finitos pasos.
Si M es un R-módulo izquierdo, entonces la acción de un elemento r en R se define como la función M → M que envía cada x al rx (o al xr en el caso de un módulo derecho), y es necesariamente un endomorfismo de grupo del grupo abeliano (M, +). El conjunto de todos los endomorfismos de grupo de M es denotado EndZ(M) y forma un anillo bajo la adición y composición, y enviando un elemento r del anillo R a su acción define realmente un homomorfismo de anillo de R a EndZ(M).
Tal del homorfismo R del anillo → EndZ(M) se llama una representación de R en el grupo abeliano M; una manera alternativa y equivalente de definir R-módulos izquierdos es decir que un R-módulo izquierdo es un grupo abeliano M junto con una representación de R en él.
Una representación se llama fiel si y solamente si la función R → EndZ(M) es inyectiva. En términos de módulos, esto significa que si r es un elemento de R tal que rx = 0 para todo x en M, entonces r = 0. Cada grupo abeliano es un módulo fiel sobre los números enteros o sobre una cierta aritmética modular Z/n Z.
Cualquier anillo R se puede ver como categoría preaditiva con un solo objeto. Con esta comprensión, un R-módulo izquierdo es un funtor aditivo (covariante) de R a la categoría Ab grupos abelianos. Los R-módulos derechos son funtores aditivos contravariantes. Esto sugiere que, si C es cualquier categoría preaditiva, un funtor aditivo covariante de C a Ab sea considerado un módulo izquierdo generalizado sobre C; estos funtores forman una categoría de funtores C-Mod que es la generalización natural de la categoría de módulos R-Mod.
Los módulos sobre anillos conmutativos se pueden generalizar en una dirección distinta: tome un espacio anillado (X, OX) y considere los haces de OX-módulos. Estos forman una categoría OX-Mod. Si X tiene solamente un punto, entonces esto es una categoría de módulo en el viejo sentido sobre el anillo conmutativo OX(X).
Escribe un comentario o lo que quieras sobre Módulo (matemáticas) (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)