x
1

Número entero



Un número entero es un elemento del conjunto numérico que contiene los números naturales; que son [1]​ o ; dependiendo de cómo se definan, sus opuestos, y en la segunda definición, además el cero.[2]​ Los enteros negativos, como −1 o −13 (se leen «menos uno», «menos trece», etc.), son menores que cero y también son menores que todos los enteros positivos. Para resaltar la diferencia entre positivos y negativos, se puede escribir un signo «menos» delante de los negativos: -1, -5, etc. Y si no se escribe signo al número se asume que es positivo.

El conjunto de todos los números enteros se representa por la letra letra inicial del vocablo alemán Zahlen («números», pronunciado [ˈtsaːlən]).

En la recta numérica los números negativos se encuentran a la izquierda del cero y los positivos a su derecha.

Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, siguiendo el modelo de los números naturales añadiendo unas normas para el uso del signo.

Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos.

Ciertas magnitudes como la temperatura o la altura usan valores por debajo del cero. La altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del mar Muerto está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m.

Los números negativos son necesarios para realizar operaciones como:

Cuando el minuendo es más pequeño que el sustraendo, la resta no puede realizarse con números naturales. Sin embargo, hay situaciones en las que es útil el concepto de números negativos, como por ejemplo al hablar de ganancias y pérdidas:

Ejemplo: Un hombre juega a la ruleta dos días seguidos. Si el primero gana 2000 pesos y al día siguiente pierde 1000, el hombre ganó en total 2000 − 1000 = $ 1000. Sin embargo, si el primer día gana 500 y al siguiente pierde 2000, se dice que perdió en total 2000 − 500 = $ 1500. La expresión usada cambia en cada caso: ganó en total o perdió en total, dependiendo de si las ganancias fueron mayores que las pérdidas o viceversa. Estas dos posibilidades se pueden expresar utilizando el signo de los números negativos (o positivos): en el primer caso ganó en total 2000 − 1000 = + $ 1000 y en el segundo ganó en total 500 − 2000 = − $ 1500. Así, se entiende que una pérdida es una ganancia negativa.

Los números naturales 0, 1, 2, 3,... son los números ordinarios que se utilizan para contar. Al añadirles un signo menos («−») delante se obtienen los números negativos:

Un número entero negativo es un número natural como 1, 2, 3, etc. precedido de un signo menos, «−». Por ejemplo −1, −2, −3, etcétera. Se leen «menos 1», «menos 2», «menos 3»,...

Además, para diferenciarlos mejor, a los números naturales se les añade un signo más («+») delante y se les llama números positivos.

Un número entero positivo es un número natural como 1, 2, 3,... precedido de un signo más. «+».

El cero no es positivo ni negativo, y puede escribirse con signo más o menos o sin signo indistintamente, ya que sumar o restar cero es igual a no hacer nada. Toda esta colección de números son los llamados «enteros».

Los números enteros son el conjunto de todos los números enteros con signo (positivos y negativos) junto con el 0. Se les representa por la letra Z, también escrita en «negrita de pizarra» como  :

Los números enteros negativos son menores que todos los positivos y que el cero. Es decir, todo número que se encuentra ubicado a la derecha es mayor que el número que se encuentra ubicado a la izquierda. Para entender como están ordenados se utiliza la recta numérica:

Se ve con esta representación que los números negativos son más pequeños cuanto más a la izquierda, es decir, cuanto mayor es el número tras el signo. A este número se le llama el valor absoluto:

El valor absoluto de un número entero es la distancia que hay del origen (cero) hasta un punto dado. El valor absoluto de 0 es simplemente 0. Se representa por dos barras verticales «||».

Ejemplos. |+5| = 5 , |−2| = 2 , |0| = 0.

El orden de los números enteros puede resumirse en:

El orden de los números enteros se define como:

Ejemplos. +23 > −56 , +31 < +47 , −15 < −9 , 0 > −36

Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, igual que puede hacerse con los números naturales.

En la suma de dos números enteros, se determina por separado el signo y el valor absoluto del resultado.

Para sumar dos números enteros, se determina el signo y el valor absoluto del resultado del siguiente modo:

Ejemplos. (+21) + (−13) = +8 , (+17) + (+26) = +43 , (−41) + (+19) = −22 , (−33) + (−28) = −61

La suma de números enteros se comporta de manera similar a la suma de números naturales:

La suma de números enteros cumple las siguientes propiedades:

Ejemplo.

Además, la suma de números enteros posee una propiedad adicional que no tienen los números naturales:

Elemento opuesto o simétrico: Para cada número entero a, existe otro entero a, que sumado al primero resulta en cero: a + (−a) = 0.

La resta de números enteros es muy sencilla, ya que ahora es un caso particular de la suma.

La resta de dos números enteros (minuendo menos sustraendo) se realiza sumando el minuendo más el sustraendo cambiando de signo.

Ejemplos
(+10) − (−5) = (+10) + (+5) = +15
(−7) − (+6) = (−7) + (−6) = −13
(−4) − (−8) = (−4) + (+8) = + 4
(+2) − (+9) = (+2) + (−9) = −7

La multiplicación y división de números enteros, al igual que la suma, requiere determinar por separado el signo y valor absoluto del resultado.

En la multiplicación y en la división de dos números enteros se determinan el valor absoluto y el signo del resultado de la siguiente manera:

Para recordar el signo del resultado, también se utiliza la regla de los signos:

Regla de los signos - Multiplicación

Regla de los signos - División

Ejemplos multiplicación. (+5) × (+3) = +15 , (+4) × (-6) = -24 , (−7) × (+8) = −56 , (−9) × (−2) = +18.

Ejemplos división. (+15) : (+3) = +5 , (+12) : (-6) = -2 , (−16) : (+4) = −4 , (−18) : (−2) = +9.


La multiplicación de números enteros tiene también propiedades similares a la de números naturales:

La multiplicación de números enteros cumple las siguientes propiedades:

Ejemplo.

La suma y multiplicación de números enteros están relacionadas, al igual que los números naturales, por la propiedad distributiva:

Propiedad distributiva. Dados tres números enteros a, b y c, el producto a × (b + c) y la suma de productos (a × b) + (a × c) son idénticos.

Ejemplo.


La división de números enteros no tiene las propiedades asociativa, conmutativa ni la distributiva.




Escribe un comentario o lo que quieras sobre Número entero (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!