x
1

Problema de la medida



Una interpretación de la mecánica cuántica es un conjunto de afirmaciones que tratan sobre la completitud, determinismo o modo en que deben entenderse los resultados de la mecánica cuántica y los experimentos relacionados con ellas. Aunque las predicciones básicas de la mecánica cuántica han sido confirmadas extensivamente por experimentos muy precisos, algunos científicos consideran que algunos aspectos del entendimiento que ésta proporciona son insatisfactorios y requieren explicaciones o interpretaciones adicionales que permitan un reconocimiento más cercano a la intuición de los resultados de los experimentos.

Los problemas sobre cómo deben entenderse ciertos aspectos de la mecánica cuántica son tan agudos que existen una serie de escuelas alternativas, que difieren por ejemplo en cuanto a si la teoría es subyacentemente determinista, o si algunos elementos tienen o no realidad objetiva, o si la teoría proporciona una descripción completa de un sistema físico.

El gran problema lo constituye el proceso de medición. En la física clásica, medir significa revelar o poner de manifiesto propiedades que estaban en el sistema desde antes de que midamos.

En mecánica cuántica el proceso de medición altera de forma incontrolada la evolución del sistema. Constituye un error pensar dentro del marco de la física cuántica que medir es revelar propiedades que estaban en el sistema con anterioridad. La información que nos proporciona la función de onda es la distribución de probabilidades, con la cual se podrá medir tal valor de tal cantidad. Cuando medimos ponemos en marcha un proceso que es indeterminable a priori, lo que algunos denominan azar, ya que habrá distintas probabilidades de medir distintos resultados. Esta idea fue y es aún objeto de controversias y disputas entre los físicos, filósofos y epistemólogos. Uno de los grandes objetores de esta interpretación fue Albert Einstein, quien a propósito de esta idea dijo su famosa frase "Dios no juega a los dados".

Independientemente de los problemas de interpretación, la mecánica cuántica ha podido explicar esencialmente todo el mundo microscópico y ha hecho predicciones que han sido probadas experimentalmente de forma exitosa, por lo que es una teoría unánimemente aceptada.

El problema de la medida se puede describir informalmente del siguiente modo:

Eso plantea un problema serio, si las personas, los científicos u observadores son también objetos físicos como cualquier otro, debería haber alguna forma determinista de predecir cómo, tras juntar el sistema en estudio con el aparato de medida, finalmente llegamos a un resultado determinista. Pero el postulado de que "una medición destruye la coherencia de un estado inobservado e inevitablemente tras la medida se queda en un estado mezcla impredecible", parece que sólo nos deja 3 salidas:

El enunciado anterior, "una medición destruye la coherencia de un estado inobservado e inevitablemente tras la medida se queda en un estado mezcla impredecible, parece que sólo nos deja 3 salidas", es demasiado arriesgado y no probado. Si partimos de que las entidades fundamentales que constituyen la materia, precisamente, y al contrario de lo que deduce (B) no tienen consciencia de sí mismas, y sin preferencia alguna por el determinismo o el caos absoluto, sólo pueden encontrar el equilibrio comportándose según leyes de probabilidad o lo que es lo mismo por leyes de "caos determinado". En la práctica cualquier defensa o negación de la teoría cuántica no responde a razonamientos matemáticos deductivos sino a impresiones o sugestiones con origen en axiomas filosóficos totalmente arbitrarios. Cabe notar que p.ej, la palabra "equilibrio" en este párrafo puede o no tener sentido y el valor de realidad que se conceda al mismo no está sujeto a demostración matemática alguna.

Comúnmente existen diversas interpretaciones de la mecánica cuántica, cada una de las cuales en general afronta el problema de la medida de manera diferente. De hecho si el problema de la medida estuviera totalmente resuelto no existirían algunas de las interpretaciones rivales. En cierto modo la existencia de diferentes interpretaciones refleja que no existe un consenso sobre cómo plantear precisamente el problema de la medida. Algunas de las interpretaciones más ampliamente conocidas son las siguientes:



Escribe un comentario o lo que quieras sobre Problema de la medida (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!