x
1

SHA-2



Con la publicación del FIPS PUB 180-2, NIST añadió tres nuevas funciones hash en la familia de SHA. Los algoritmos eran comúnmente conocidos como SHA-2, especificados posteriormente por su longitud (en bits): SHA-256, SHA-384, y SHA-512.

Los algoritmos fueron previamente publicados en 2001 en el borrador FIPS PUB 180-2, momento en el cual se aceptaban revisiones públicas y comentarios. En agosto de 2002, FIPS PUB 180-2 se convirtió en el nuevo estándar de hash seguro, reemplazando el FIPS PUB 180-1, el cual fue publicado en abril de 1995. La actualización del estándar incluyó el algoritmo original SHA-1, con la notación técnica consistente con la que describía el funcionamiento interno de la familia SHA-2.[1]

En febrero de 2004, se publicó una noticia de modificación para FIPS PUB 180-2, especificando una variante adicional (SHA-224) para que coincidiera la longitud de la clave con la de Triple DES.[2]​ En octubre de 2008, el estándar fue actualizado en el FIPS PUB 180-3, incluyendo el SHA-224 de la notificación de modificación pero sin modificar fundamentalmente el estándar. La primera motivación de la actualización del estándar fue redistribuir la información de seguridad de los algoritmos de hash y recomendaciones para su uso en la "Special Publications" 800-107 y 800-57.[3][4][5]​ Datos de prueba detallados y ejemplos de mensajes "resumidos" fueron también eliminados del estándar y fueron proporcionados como documentos separados.[6]

En marzo de 2012, el estándar fue actualizado a FIPS PUB 180-4, añadiendo las funciones hash SHA-512/224 y SHA-512/256, y describiendo un método para la generación inicial de valores mediante versiones truncadas del SHA-512. Adicionalmente, una restricción previa del relleno de los datos de entrada para el cálculo del hash fue eliminada, permitiendo que los datos hash fueran calculados simultáneamente con la generación del contenido, tal como una retransmisión en tiempo real de un vídeo o audio. El relleno final del bloque de datos debe seguir ocurriendo antes de la salida del hash.[7]

La SHA-256 y SHA-512 son nuevas funciones hash con 8 palabras de tamaño 32 y 64 bits, respectivamente. Usan diferentes desplazamientos y constantes, pero su estructura son por otra parte virtualmente idéntica, diferenciándose únicamente por el número de iteraciones. SHA-224 y SHA-384 son simples versiones de truncado de las dos anteriores funciones y estas son calculadas con diferentes valores iniciales. SHA-512/224 y SHA-512/256 son también versiones truncadas de SHA-512, pero los valores iniciales son generados usando un método descrito en el FIPS PUB 180-4. La familia de algoritmos SHA-2 están patentados en los Estados Unidos de América (patente con identificación 6829355) y fueron liberados bajo una licencia libre de derechos de autor.[8]

A finales de 2013, los mejores ataques públicos consiguieron romper las 46 de las 64 iteraciones del SHA-256[9]​ y 46 de las 80 iteraciones del SHA-512. Información más detallada en la sección "Criptoanálisis y validación" siguiente.[10]

En la tabla de abajo, estado interno significa "suma hash interna" después de cada compresión de un bloque de datos.

Los datos de rendimientos descritos anteriormente fueron realizados con una implementación de un único hilo (hebra) de un AMD Opteron 8354 a 2.2 GHz bajo un Linux x64, y sólo sirven para una ruda comparación general. Para un mayor detalle de las mediciones de rendimiento en arquitecturas de procesadores modernos se facilita la siguiente tabla.

Los resultados de rendimiento etiquetados como 'x86' fueron obtenidos usando un código de 32 bits en procesadores de 64 bits, mientras que los etiquetados como 'x86-64' son códigos de 64 bits. Mientras que SHA-256 está diseñado para operaciones de 32 bits, se beneficia computacionalmente del código optimizado para procesadores de 64 bits. Las implementaciones de 32 bits para SHA-512 son significativamente más lentas que sus equivalente en 64 bits. Las variaciones de ambos algoritmos con diferente tamaños de salida tienen un rendimiento similar, ya que las funciones de expansión y compresión del mensaje son idénticas, y únicamente varia los valores iniciales y los tamaños de salida. Las mejores implementaciones del MD5 y SHA-1 consiguen un rendimiento entre 4,5 y 6 ciclos por byte en procesadores modernos.

Los ensayos fueron llevado a cabo por la Universidad de Illinois en Chicago en su sistema hydra8 ejecutado en un Intel Xeon E3-1275 V2 a una frecuencia de reloj de 3,5 GHz, y en su sistema hydra9 ejecutada en un AMD A10-5800K con una frecuencia de 3,8 GHz.[12]​ Las velocidades referenciadas como ciclos por bytes son la mediana del rendimiento de un algoritmo tratando con un mensaje de 4096 bytes usando el software de "benchmarking" criptográfico SUPERCOP.[13]​ El rendimiento MiB/s se extrapolan de la velocidad del reloj de una CPU de un solo núcleo, rendimiento que varía en el mundo real debido a numerosos factores.

Las funciones hash SHA-2 están implementadas en una gran variedad de aplicaciones y protocolos de seguridad, como por ejemplo: TLS y SSL, PGP, SSH, S/MIME, Bitcoin, PPCoin y IPsec.

La moneda criptográfica Bitcoin depende en gran medida en un doble uso del SHA-256. El SHA-256 es usado para identificar los paquetes software de Debian GNU/Linux[14]​ y en el estándar de mensaje firmado DKIM; SHA-512 es parte del sistema para identificar los vídeos guardados en el Tribunal Penal Internacional para Ruanda.[15]​ SHA-256 y SHA-512 fueron propuestos para ser usados en DNSSEC.[16]​ Los proveedores de Unix y Linux están adoptando SHA-2 de 256 y 512 bits para aplicarlo en las contraseñas de seguridad.[17]

SHA-1 y SHA-2 son algoritmos hash de seguridad requeridos por ley en ciertas aplicaciones del gobierno de Estados Unidos, junto con el uso de otros algoritmos y protocolos criptográficos, para la protección de información clasificada y sensible. FIPS PUB 180-1 también alentó la adopción y uso del SHA-1 por parte de organizaciones privadas y comerciales. El gobierno está dejando de utilizar SHA-1, tal como expone el U.S. National Institute of Standards and Technology, "Las agencias federales deberían dejar de usar el SHA-1 para... aplicaciones que necesiten resistencia de colisión tan pronto como sea posible, y deberán usar familias de funciones hash SHA-2 para estas aplicaciones después de 2010" (énfasis en el original).[18]​ La directiva de NIST de que las agencias del gobierno estadounidense deban dejar de usar el SHA-1 después de 2010[19]​ y la finalización del SHA-3[20]​ deberían acelerar la migración del SHA-1.

Las funciones SHA-2 no son tan ampliamente usadas como SHA-1, a pesar de su mejora en seguridad. Las razones pueden incluir una falta de soporte del SHA-2 en sistemas que ejecutan Windows XP SP2 o anteriores,[21]​ o por una falta de urgencia percibida mientras no se haya descubierto aún colisiones en el SHA-1.

Para una función en la cual L es el número de bits del mensaje tratado, encontrar un mensaje que corresponde con el mensaje tratado siempre se puede conseguir empleando una búsqueda de fuerza bruta con 2L evaluaciones. A esto se le denomina ataque preimagen y puede ser práctico o no dependiendo del valor de L y del entorno de computación empleado. El segundo criterio, encontrar dos mensajes diferentes que producen el mismo mensaje tratado, se le conoce como colisión, requiere únicamente una media de 2L/2 evaluaciones si se emplea un ataque de cumpleaños.

A efectos prácticos, existe una gran preocupación ante este nuevo tipo de ataques ya que podrían permitir el uso de otros más eficientes. Aunque no se hayan visto casos de este tipo, existe una creciente creencia en emplear nuevos algoritmos hash más fuertes. Algunas aplicaciones que emplean sistemas criptográficos hash, por ejemplo para almacenar contraseñas, son mínimamente afectados por un ataque de colisión. Generar una contraseña que funcione para una cuenta dada requiere un ataque de preimagen, además de acceder al hash de la contraseña original (normalmente en un fichero shadow) el cual puede ser o no trivial. Recuperar una contraseña encriptada (p.e, obtener la contraseña para ser usada en otras cuentras del usuario) es imposible mediante ataques. (Sin embargo, incluso empleando un sistema hash seguro no puede impedir ataques de fuerza bruta en contraseñas débiles (p.e, 1234)).

En el caso de documentos firmados, un atacante no puede simplemente falsificar una firma a partir de un documento existente, el atacante debería generar dos pares de documentos, uno inocuo y otro dañado, y obtener la clave privada del titular para firmar el inocuo documento. Hay situaciones concretas en las que es posible; hasta finales de 2008, fue posible crear un certificado falsificado de SSL empleando una colisión de MD5[22]

Existen dos ataques de preimagen por encuentro a medio camino contra SHA-2 con los que se reduce el número de iteraciones. El primero de ellos, respecto SHA-256, se resuelve en 41 rondas con respecto a 64 rondas con una complejidad temporal de 2253.5 y una complejidad espacial de 216; respecto SHA-512, se resuelve en 46 rondas con respecto a 80 rondas con una complejidad temporal de 2502 y una complejidad espacial de 222.[23]

Las implementaciones de todas las funciones de seguridad aprobadas por FIPS son oficialmente validadas mediante un programa CMVP y necesariamente ejecutadas por la Instituto Nacional de Estándares y Tecnología (NIST) y la Communications Security Establishment (CSE). Para una verificación informal, fue dispuesto en la página web del NIST un paquete para generar un alto número de vectores de prueba; sin embargo, los resultados de verificación no pueden reemplazar de ninguna forma a la validación formal de CMVP, el cual es requerido por ley para ciertas aplicaciones.

Valores hash para una cadena de caracteres vacía.

Incluso un pequeño cambio en el mensaje (con una apabullante probabilidad) dará como resultado un hash completamente distinto, debido al efecto avalancha. Por ejemplo, añadiendo un punto al final de la frase:

A continuación un pseudocódigo para un algoritmo SHA-256. Nótese el gran incremento a la hora de mezclar los bits de la palabra w[16..63] comparada con SHA-1.

La computación de los valores ch y maj puede ser optimizada de la misma forma tal como está descrita para SHA-1.

SHA-224 es idéntico que SHA-256, excepto por:

SHA-512 estructuralmente es idéntico al SHA-256, pero:

SHA-384 es idéntico a SHA-512, exceptuando que:

SHA-512/t es idéntico a SHA-512 excepto por:

Las funciones hash SHA se pueden encontrar en muchos de los lenguajes de programación modernos, como por ejemplo C, C++, C#, Go,[24]Javascript, Java,[25]Python,[26]PHP,[27]Perl,[28]​ y Ruby.[29]



Escribe un comentario o lo que quieras sobre SHA-2 (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!