El sesgo muestral, a veces también llamado efecto de selección o error muestral es una distorsión que se introduce debido a la forma en que se selecciona la muestra. Se refiere a la distorsión de un análisis estadístico, debido al método de recolección de muestras. Si el sesgo muestral no es tomado en cuenta, entonces algunas conclusiones propuestas pueden ser erróneas. Un ejemplo de sesgo muestral es el sesgo de Berkson.
El sesgo muestral implica pre o post selección de muestras que pueden incluir preferencia o excluir cierto tipo de resultados. Normalmente esto hace que medidas de significación estadística parezcan más fuertes de lo que son. Pero también es posible causar artefactos totalmente ilusorios. El sesgo muestral puede ser el resultado de fraudes científicos que manipulan directamente la información, pero más a menudo es inconsciente, o bien debido a los sesgos en los instrumentos utilizados para la observación.
Como otro ejemplo: si un experimento fuera conducido para contar de la distribución del tamaño de los peces en un lago, una red podría ser utilizada para capturar una muestra representativa de peces. Si la red tiene un tamaño de malla de 1 cm, entonces no hay peces más estrechos que 1 cm de ancho que se encuentren en la muestra. Este es el resultado del método de selección: no hay manera de saber si hay peces de tamaño inferior a 1 cm sobre la base de un experimento con esa red.
Para determinar en un contexto particular, si existe un sesgo muestral o no, no es suficiente establecer que ha habido selección. En su lugar, se debe establecer que la cantidad de interés (tamaño de los peces, por ejemplo) es sistemáticamente diferente en la muestra que en toda la población de interés, como el procedimiento de selección al mismo tiempo puede dar lugar a un sesgo en una cantidad como en el tamaño de los peces, pero no en otro, por ejemplo, la proporción de sexos de los peces, y qué tipo de pez que es.
Sherry Seethaler informa del caso del titular del Chicago Tribune,(Dewey derrota a Truman), que se basó en parte en una encuesta telefónica. En ese momento, los teléfonos eran artículos caros, cuyos propietarios tienden a estar en la élite, quienes favorecían a Dewey mucho más que el votante promedio.
Hay muchos tipos de posibles sesgos de selección, entre otros, se incluyen:
En general, los sesgos de selección no se pueden superar con el análisis estadístico de los datos solitarios existentes, aunque la corrección de Heckman se puede utilizar en casos especiales. Una evaluación informal del grado del sesgo de selección puede llevarse a cabo examinando las correlaciones entre las variables (exógena) de fondo y un indicador de tratamiento. Sin embargo, en modelos de regresión, es la correlación entre los determinantes inobservados de los resultados y los determinantes inobservados de la selección en la muestra, lo que da las estimaciones del sesgo, y esta correlación entre inobservables no se puede evaluar directamente por las determinantes observadas del tratamiento.
El sesgo de selección está estrechamente relacionado con:
Escribe un comentario o lo que quieras sobre Sesgo muestral (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)