x
1

Sistema de ecuaciones algebraicas



En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de ecuaciones con más de una incógnita que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones.

En un sistema de ecuaciones algebraicas, las incógnitas son valores numéricos menores a la constante (o más generalmente elementos de un cuerpo sobre el que se plantean las ecuaciones), mientras que en una ecuación diferencial las incógnitas son funciones o distribuciones de un cierto conjunto definido de antemano. Una solución de dicho sistema es por tanto, un valor o una función que substituida en las ecuaciones del sistema hace que éstas se cumplan automáticamente sin que se llegue a una contradicción. En otras palabras el valor que reemplazamos en las incógnitas debe hacer cumplir la igualdad del sistema.

Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices.

La forma genérica de un sistema de ecuaciones algebraicas y incógnitas es la siguiente:

(1)

donde son funciones de las incógnitas. La solución, perteneciente al espacio euclídeo , será tal que el resultado de evaluar cualquier expresión con los valores de dicha solución, verifique la ecuación.

Los sistemas de 2 o 3 incógnitas reales admiten representaciones gráficas cuando las funciones en (1) son continuas a tramos. En cada ecuación se representa como una curva o una superficie curva. La existencia de soluciones en ese caso puede deducirse a partir de la existencia de intersecciones comunes a dichas curvas o superficies curvas. Los sistemas de 2 o 3 incógnitas reales admiten representaciones gráficas cuando las funciones en (1) son continuas a tramos. En cada ecuación se representa como una curva o una superficie curva. La existencia de soluciones en ese caso puede deducirse a partir de la existencia de intersecciones comunes a dichas curvas o superficies curvas.

Un sistema de ecuaciones sobre puede clasificarse de acuerdo con el número de soluciones o cardinal del conjunto de soluciones , de acuerdo con este criterio un sistema puede ser:

Se llama sistema lineal si las ecuaciones que conforman el sistema son funciones afines. A diferencia del caso general, la solución de los sistemas de ecuaciones lineales son fáciles de encontrar cuando los coeficientes de las ecuaciones son números reales o complejos. También existen medios generales de resolución cuando los coeficientes pertenecen a un anillo, aunque la búsqueda de las soluciones en ese caso puede ser un poco más complicada.

Una característica importante de los sistemas lineales de ecuaciones es que admiten la llamada forma matricial. Esta forma permite representar el sistema usando tres matrices, de la siguiente forma:

(2)

La primera es la matriz de coeficientes, donde el término representa al coeficiente que acompaña a la j-ésima incógnita de la ecuación i-ésima. La segunda es la matriz de incógnitas, donde cada término se corresponde con una de las incógnitas. La tercera matriz es la de términos independientes, donde el cada representa al término independiente de la ecuación i-ésima.

Esta representación matricial facilita el uso de algunos métodos de resolución, como el método de Gauss, en el que, partiendo de la matriz aumentada (matriz de coeficientes a la que se le ha acoplado la matriz de términos independientes), y aplicando transformaciones lineales sobre las ecuaciones, se pretende llegar a una matriz de este tipo:

Una vez que la matriz se ha triangulado, el valor de cada término se corresponderá con el de la incógnita . Si queda alguna fila del tipo , con , el sistema no tendrá solución.

Ejemplos:

El teorema de la función inversa proporciona condiciones suficientes de existencia de solución, de un sistema como (1) con . Si sucede que la función vectorial:

{{ecuación|:es diferenciable con continuidad, es decir, es de clase y su jacobiano no se anula en ningún punto entonces existe una única solución del sistema (1). En ese caso existirá una función inversa, y se podrá escribir la solución buscada simplemente como:

Sin embargo, la condición de diferenciabilidad anterior aun siendo condición suficiente, no es una condición necesaria, por lo que existen sistemas de ecuaciones en que las funciones no son diferenciables y sin embargo, existen soluciones. Más aún, en casos en que existe más de una solución, si la función es diferenciable entonces el jacobiano se anula en algún punto, pero eso no impide que existan varias soluciones.

En casos de un menor número de ecuaciones que de incógnitas, cuando , entonces el sistema es compatible indeterminado o carece de soluciones. En esos casos, el teorema de la función implícita proporciona condiciones suficientes, aunque no necesarias, para la existencia de soluciones de un modo similar a como el teorema de la función inversa las proporciona en el caso .

En un sistema de ecuaciones lineales compatible y determinado la solución es siempre única. En el caso de ecuaciones polinómicas la respuesta es más complicada, aunque puede probarse que dos curvas polinómicas en el plano de grados n y m funcionalmente independientes tienen como mucho nm soluciones diferentes. Ese resultado se desprende del siguiente teorema de Bézout:

Si bien para los sistemas de ecuaciones lineales existen multitud de técnicas del álgebra lineal, para los sistemas de ecuaciones no lineales el problema es técnicamente más difícil.

Los métodos analíticos se restringen casi exclusivamente a sistemas de ecuaciones lineales. Ni siquiera se conoce una solución analítica para el sistema de ecuaciones de segundo grado general:

Las aplicaciones técnicas generalmente recurren a algoritmos numéricos que permiten calcular aproximaciones numéricas a las soluciones de un sistema de ecuaciones.

Uno de los métodos numéricos que puede generalizarse a sistemas no lineales es el método de Newton-Raphson. En el caso multidimensional la resolución numérica del sistema de n ecuaciones puede hacerse a partir del conocimiento de una solución aproximada , siempre y cuando la aplicación anterior sea diferenciable, mediante el esquema iterativo:

O más explícitamente:

Lamentablemente la convergencia del esquema iterativo anterior no está garantizada y en casos de soluciones múltiples la convergencia puede darse hacia la solución no deseada.

Los métodos gráficos "no están bien", son didácticos e ilustrativos, aunque en general carecen de interés práctico en las aplicaciones técnicas de importancia. Además están restringidos generalmente a sistemas de dos o tres ecuaciones reales.Parecida a la de tres ecuaciones

Dos sistemas de ecuaciones con dos incógnitas de valor real, suelen aparecer como uno de los cinco tipos diferentes mencionados a continuación. Tienen una relación con el número de soluciones:

La ecuación x2 + y2 = 0 puede ser pensada como la ecuación de un círculo cuyo radio se ha reducido a cero, por lo que representa un único punto: (x = 0, y = 0), a diferencia de una normal de un círculo que contiene infinito número de puntos. Este y otros casos similares muestran la razón por la cual los dos últimos tipos anteriormente descritos necesitan la calificación de "normalmente". Un ejemplo de un sistema de ecuaciones del primer tipo descrito anteriormente, con un número infinito de soluciones viene dada por x = | x |, y = | y | (donde la notación | • | indica el valor absoluto de la función), cuyas soluciones de forma un cuadrante de la x - y plano. Otro ejemplo es x = | y |, y = | x |, cuya solución representa un rayo.



Escribe un comentario o lo que quieras sobre Sistema de ecuaciones algebraicas (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!