En geometría algebraica, una superficie de Riemann es una variedad compleja de dimensión (compleja) uno. Consecuentemente, la variedad real subyacente será de dimensión 2.
El desarrollo de la idea de superficie de Riemann comenzó a mediados del siglo XIX de la mano del matemático Bernhard Riemann, con los intentos de extender el dominio de definición de funciones analíticas definidas sobre un abierto U del plano complejo. La extensión maximal (extensión analítica) se lograba no sobre el propio plano complejo, sino sobre copias de abiertos del mismo que se solapaban, en lo que hoy día conocemos como variedad compleja de dimensión uno.
Una variedad real de dimensión 2 puede convertirse en una superficie de Riemann (frecuentemente de varios modos no equivalentes) si y solo si es orientable. De este modo, la esfera y el toro admitirán estructuras complejas, pero la banda de Möbius, la botella de Klein y el plano proyectivo real no.
Se sabe que la 2-esfera tiene una sola estructura analítica. Mientras que cada superficie orientable de género mayor que cero tiene una infinidad, constrastando con el punto de vista diferenciable ya que las superficies sólo tienen una estructura diferenciable.
Las superficies de Riemann constituyen el lugar natural donde estudiar el comportamiento global de numerosas funciones. P ej:
Toda superficie de Riemann no compacta admite funciones holomorfas no constantes.
Esto contrasta con que en una superficie de Riemann compacta toda función holomorfa es constante debido al principio del máximo. Sin embargo, en superficies compactas siempre existirán funciones meromorfas no constantes, que pueden considerarse como aplicaciones holomorfas de la superficie sobre la esfera de Riemann C ∪ {∞}).
El conjunto de superficies de Riemann puede dividirse en tres tipos: las superficies hiperbólicas, las parabólicas y las elípticas. Esta división viene dada por el teorema de uniformización, que garantiza que toda superficie de Riemann simplemente conexa es conformemente equivalente a una de las siguientes:
En caso de que la superficie X no sea simplemente conexa, podremos afirmar que su recubridor universal Y es conformemente equivalente a uno de los tres modelos anteriores. En ese caso, la superficie X podrá obetenersese como el espacio cociente de Y bajo la acción de un grupo de biholomorfismos del recubridor Y que actúe de modo libre (es decir, sin puntos fijos) y propiamente discontinuo.
Un grupo de biholomorfismos del disco que actúe de modo libre y propiamente discontinuo se dice un grupo Fuchsiano. Existen numerosos grupos Fuchsianos, y su estudio es un ramo importante de la geometría moderna.
Como todo biholomorfismo del disco resulta ser una isometría de la métrica hiperbólica del disco unidad, también conocida como métrica de Poincaré, se induce una métrica hiperbólica en el cociente.
Escribe un comentario o lo que quieras sobre Superficie de Riemann (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)