Las siglas VVER o WWER hacen referencia a un reactor nuclear de agua presurizada (PWR por sus siglas en inglés) desarrollados en la antigua Unión Soviética y la actual Rusia. VVER es la transcripción del acrónimo ruso ВВЭР (Водо-водяной энергетический реактор, Reactor Energético de Agua-Agua). Dicho nombre se deriva del hecho de que el agua funciona tanto como refrigerante como moderador de neutrones.
Los VVER han sido diseñados por el Instituto Kurchátov y el OKB Gidopress mientras que la construcción corre a cargo de Izhorsky Zavod y Аtomeiegoproekt. De su exportación se encarga Atomstroyexport.
Los VVER tienen un coeficiente de vacío negativo que convierte al reactor en intrínsecamente seguro: en el caso de perder refrigerante el efecto moderador también disminuye, lo cual produce una disminución de potencia que compensa la pérdida de refrigerante.
El combustible, óxido de uranio (U2O), está ligeramente enriquecido (alrededor del 2,4 - 4,4% de U-235), compactado en pastillas y ensamblado en las barras de combustible. Estas barras de combustible se sumergen totalmente en agua la cual se mantiene bajo elevada presión de modo que no pueda hervir. Todo el reactor está ensamblado en una armazón a presión de acero macizo.
Existen VVER en funcionamiento o construcción en Armenia, Bulgaria, China, Eslovaquia, Finlandia, Hungría, India, Irán, la República Checa, Rusia y Ucrania.
Las armadas soviética y rusa adaptaron reactores PWR para sus submarinos y barcos de superficie, si bien no reciben de nombre "VVER".
La intensidad de la reacción nuclear está controlada por barras de control que pueden ser introducidas en el reactor desde la parte superior. Estas barras están hechas de un material que absorbe los neutrones y, al introducirse, obstaculizan la reacción en cadena. En caso de emergencia se activa el SCRAM para que estas barras de control se inserten totalmente en el núcleo, deteniendo así la reacción.
Los VVERs constan de tres circuitos de refrigeración: primario, secundario y terciario. Por seguridad, los componentes son redundantes.
Al igual que los reactores de diseño occidental, los VVER siguen la estrategia de defensa en profundidad para evitar el escape de material radioactivo. Para ello están dotados de diversas barreras de seguridad:
Se suele comentar que los reactores rusos son más inseguros que los occidentales, no obstante más que de inferior calidad se trata más bien de que obedecen a criterios diferentes. A pesar de eso la cultura de seguridad fue muy inferior hasta el accidente de Chernobyl. Los VVER más modernos cumplen con los mismos requisitos de seguridad que los occidentales de hoy en día.
Los RBMK (modelo del reactor que produjo el accidente de Chernóbil) fueron derivados de reactores usados para la producción de plutonio con fines militares, debido a ello podían —si se deseaba— usarse para producir dicho plutonio. Este hecho, unido a su bajo coste, impulsó la construcción de RBMKs en la Unión Soviética.
El accidente de Chernóbyl produjo serias dudas sobre la seguridad de los RBMK, por lo que Rusia abandonó su construcción y se centró casi en exclusiva en los VVER, considerado un modelo más seguro principalmente por dos motivos:
Existen varios modelos de reactores, cuya denominación se corresponde con la potencia generada.
Primera versión comercial. Inicialmente pensado para generar 500 MWe se tuvo que disminuir su potencia a 440 MWe debido a la ausencia de turbinas convenientes. Cada reactor tiene dos turbinas K-220-44 de 220 MW cada una.
Existen básicamente dos versiones de los VVER-440, la primera es la V-230 mientras que la V-213 apareció posteriormente. V-179 son los dos prototipos de Novovoronezh. Los V-270 de Armenia son V-230 modificados para zonas de elevada sismicidad. Por su parte los V-318 de Cuba son modificaciones de la versión V-213.
Principales virtudes:
Principales deficiencias:
Principales mejoras respecto al V-230:
Los VVER-440/V-213 seguían sin cumplir los estándares occidentales en los siguientes aspectos:
Segunda versión comercial. La principal novedad estriba en que incorpora un edificio de contención similar a las centrales de construcción occidental.
Las versiones más habituales son la V-320 y las AES-91 & AES-92.
Principales virtudes:
Principales defectos:
Tras el accidente de Chernobyl se desarrollaron diversas versiones que incorporaban mejoras de seguridad. La primera fue la AES-88 (AES significa Central Nuclear), que no llegó a materializarse por considerarse no rentable. Posteriormente se diseñaron las versiones AES-91 y AES-92 (también conocidas como V-392), que tenían como objetivo cumplir los estándares occidentales. Ambas son similares, salvo por los siguientes hechos:
Posteriores evoluciones de la V-392, encargadas por India, China e Irán, dieron lugar (respectivamente) a las V-412, V-428 y V-466.
Mejora del VVER-1000, con especial hincapié en la seguridad, pensado para la exportación. El núcleo del reactor es un poco más grande que el de su antecesor, lo que, permite, junto a una mayor eficiencia (en torno al 36%, frente al 31% de los VVER-1000), aumentar la producción eléctrica hasta los 1160 MW.
El VVER-1200 incorpora nuevas medidas de seguridad, como un doble muro de contención (el primero tiene 1'2 metros de espesor y el segundo 2'2 metros) que le permite resistir impactos de aviones de 20 toneladas que se muevan a 200 m/s. El reactor está también diseñado para soportar terremotos de hasta magnitud 8 en la escala MSK. La probabilidad de daños al reactor se estima en 10-6 por reactor y año. La vida operacional del reactor se ha aumentado hasta los 60 años (las versiones anteriores de los VVER se licenciaron inicialmente para 30) y se ha alargado también el tiempo necesario entre recargas de combustible. Se considera que el VVER-1200 pertenece a la III Generación + de reactores nucleares.
El coste de un VVER-1200 se estima en unos 2500 millones de dólares, si bien el fabricante confía en poder reducirlo hasta los 1400.
Existe una única versión de este reactor, la AES-2006 (V-491).
Los primeros VVERs que entraron en la Unión Europea fueron los de la República Democrática Alemana, cuando esta desapareció y quedó integrada dentro de la República Federal Alemana. El gobierno de la Alemania reunificada decidió cerrar todos los reactores existentes en la antigua R.D.A. En esta decisión tuvo gran importancia el escaso tiempo transcurrido desde el accidente de Chernobyl.
Finlandia fue el segundo país que entró en la Unión Europea con VVERs. En su caso, debido a que las medidas de seguridad eran en gran medida occidentales, no se pusieron trabas.
Más polémicos fueron los ingresos de Bulgaria, Eslovaquia, Hungría y República Checa. En su caso se decidió que se permitirían, tras recibir mejoras, los VVER-440/V-213 y los VVER-1000/V-320 pero que los VVER-440/V-230 tendrían que cerrarse. La decisión perjudicaba a Eslovaquia (que debía cerrar dos reactores que acababan de recibir importantes mejoras de seguridad) y, sobre todo, a Bulgaria, obligada a clausurar cuatro reactores y donde la medida recibió severas críticas.
Escribe un comentario o lo que quieras sobre VVER (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)