Waste




Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Resource recovery is the retrieval of recyclable waste, which was intended for disposal, for a specific next use.[17] It is the processing of recyclables to extract or recover materials and resources, or convert to energy. This process is carried out at a resource recovery facility.[18] Resource recovery is not only important to the environment, but it can be cost effective by decreasing the amount of waste sent to the disposal stream, reduce the amount of space needed for landfills, and protect limited natural resources.[19]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[20] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[20] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[20] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[20] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[20] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[20]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[20] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[20]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[21] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[22]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology


Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Resource recovery is the retrieval of recyclable waste, which was intended for disposal, for a specific next use.[17] It is the processing of recyclables to extract or recover materials and resources, or convert to energy. This process is carried out at a resource recovery facility.[18] Resource recovery is not only important to the environment, but it can be cost effective by decreasing the amount of waste sent to the disposal stream, reduce the amount of space needed for landfills, and protect limited natural resources.[19]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[20] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[20] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[20] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[20] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[20] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[20]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[20] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[20]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[21] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[22]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology


Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Resource recovery is the retrieval of recyclable waste, which was intended for disposal, for a specific next use.[17] It is the processing of recyclables to extract or recover materials and resources, or convert to energy. This process is carried out at a resource recovery facility.[18] Resource recovery is not only important to the environment, but it can be cost effective by decreasing the amount of waste sent to the disposal stream, reduce the amount of space needed for landfills, and protect limited natural resources.[19]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[20] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[20] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[20] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[20] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[20] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[20]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[20] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[20]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[21] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[22]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology


WASTE is a peer-to-peer and friend-to-friend protocol and software application developed by Justin Frankel at Nullsoft in 2003 that features instant messaging, chat rooms, and file browsing/sharing capabilities. The name WASTE is a reference to Thomas Pynchon's novel The Crying of Lot 49. In the novel, W.A.S.T.E. is (among other things) an underground postal service.

In 2003, less than 24 hours after its release,[1] WASTE was removed from distribution by AOL, Nullsoft's parent company.[2] The original page was replaced with a statement claiming that the posting of the software was unauthorized and that no lawful rights to it were held by anyone who had downloaded it, in spite of the original claim that the software was released under the terms of the GNU General Public License.

Several developers have modified and upgraded the WASTE client and protocol. The SourceForge edition is considered by many to be the official development branch, but there are several forks.

WASTE is a decentralized chat, instant messaging and file sharing program and protocol. It behaves similarly to a virtual private network by connecting to a group of trusted computers, as determined by the users. This kind of network is commonly referred to as a darknet. It uses strong encryption to ensure that third parties cannot decipher the messages being transferred. The same encryption is used to transmit and receive instant messages, chat, and files, maintain the connection, and browse and search.

WASTE networks are decentralized (see social networks), meaning there is no central hub or server that everyone connects to. Peers must connect to each other individually. Normally, this is accomplished by having individuals sharing their RSA public keys, ensuring that their computers are accessible via the appropriate ports (one or more parties must have an IP address and port that can be reached by the other), and entering the IP address and port of someone on the network to connect to.

Once connected to the network, public keys are automatically exchanged amongst members (provided enough of the members are set to forward and accept public keys), and nodes will then attempt to connect to each other, strengthening the network (decreasing the odds that any one node going down will collapse or shut out any part of the network), as well as increasing the number of possible routes from any given point to any other point, decreasing latency and bandwidth required for communication and file transfer.

Since WASTE connects small, private groups rather than large, public ones, the network search feature is one of the fastest of all the decentralized P2P applications. Its instant messaging and file sharing capabilities are much closer to those of AOL Instant Messenger than more typical file sharing programs. Members of the network can create private and public chat rooms, instant message each other, browse each other's files, and trade files, including the pushing or active sending of files by hosts, as well as the more common downloading by users. Simple drag-and-drop to chat boxes will send files to their intended destinations.

The suggested size for a WASTE network (referred to as a mesh by users) is 10-50 nodes, though it has been suggested that the size of the network is less critical than the ratio of nodes willing to route traffic to those that are not. With original Nullsoft-client groups now exceeding ten years of age, it's not uncommon for stable meshes to host multiple terabytes of secure content.

By default, WASTE listens to incoming connections on port 1337. This was probably chosen because of 1337's leet connotations.

Since there is no central hub, WASTE networks typically employ a password or passphrase, also called a network name to prevent collision. That is, a member from one network connecting to a member of another network, thus bridging the two networks. By assigning a unique identifier (passphrase) to your network, the risk of collisions can be reduced, particularly with the original clients.

Nullnets are networks without a passphrase. It is impossible to know how many nullnets exist, but there is one primary nullnet. The best way to access the nullnet is to post your credentials to the WASTE Key Exchange.[3][4] The nullnet can easily merge with other nullnets because there is no passphrase, which makes it a great place for public discussion and file sharing.

As of version 1.7, WASTE comes in an experimental and a stable release. The experimental branch implements a new 16k packet size, which improves overhead and transfer speeds, but is not compatible with previous versions which support a 4k packet size.[5]

WASTE 1.7.4 for Windows was released on 24 December 2008, and was current as of October 2009. This is a new branch on SourceForge created because of inactivity on the main WASTE development branch. This is the most fully featured version to date.[6]

A cross-platform (including Linux, OS X, and Microsoft Windows) beta version of WASTE called Waste 1.5 beta 4 a.k.a. wxWaste, using the WxWidgets toolkit is available.[7]

VIA Technologies released a fork of WASTE under the name PadlockSL, but removed the product's website after a few weeks. The user interface was written in Qt and the client was available for Linux and Windows.[8]

Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Resource recovery is the retrieval of recyclable waste, which was intended for disposal, for a specific next use.[17] It is the processing of recyclables to extract or recover materials and resources, or convert to energy. This process is carried out at a resource recovery facility.[18] Resource recovery is not only important to the environment, but it can be cost effective by decreasing the amount of waste sent to the disposal stream, reduce the amount of space needed for landfills, and protect limited natural resources.[19]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[20] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[20] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[20] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[20] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[20] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[20]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[20] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[20]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[21] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[22]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology


Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Waste management (or waste disposal) includes the processes and actions required to manage waste from its inception to its final disposal.[17] This includes the collection, transport, treatment and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, economic mechanisms.

Waste can be solid, liquid, or gaseous and each type has different methods of disposal and management. Waste management deals with all types of waste, including industrial, biological, household, municipal, organic, biomedical, radioactive wastes. In some cases, waste can pose a threat to human health.[18] Health issues are associated throughout the entire process of waste management. Health issues can also arise indirectly or directly. Directly, through the handling of solid waste, and indirectly through the consumption of water, soil and food. Waste is produced by [19] human activity, for example, the extraction and processing of raw materials.[20] Waste management is intended to reduce adverse effects of waste on human health, the environment, planetary resources and aesthetics.

Waste management practices are not uniform among countries (developed and developing nations); regions (urban and rural areas), and residential and industrial sectors can all take different approaches.[21]

Proper management of waste is important for building sustainable and liveable cities, but it remains a challenge for many developing countries and cities. A report found that effective waste management is relatively expensive, usually comprising 20%–50% of municipal budgets. Operating this essential municipal service requires integrated systems that are efficient, sustainable, and socially supported.[22] A large portion of waste management practices deal with municipal solid waste (MSW) which is the bulk of the waste that is created by household, industrial, and commercial activity.[23] Measures of waste management include measures for integrated techno-economic mechanisms[24] of a circular economy, effective disposal facilities, export and import control[25][26] and optimal sustainable design of products that are produced.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste.[30] Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

Resource recovery goes further than just the management of waste. Resource recovery is part of a circular economy, in which the extraction of natural resources and generation of wastes are minimised, and in which materials and products are designed more sustainably for durability, reuse, repairability, remanufacturing and recycling.[31] Life-cycle analysis (LCA) can be used to compare the resource recovery potential of different treatment technologies. Resource recovery can be enabled by changes in government policy and regulation, circular economy infrastructure such as improved 'binfrastructure' to promote source separation and waste collection, reuse and recycling,[32] innovative circular business models,[33] and valuing materials and products in terms of their economic but also their social and environmental costs and benefits.[34] For example, organic materials can be treated by composting and anaerobic digestion and turned into energy, compost or fertilizer.[35] Similarly, wastes currently stored in industrial landfills and around old mines can be treated with bioleaching[36] and engineered nanoparticles[37] to recover metals such as lithium, cobalt and vanadium for use in low-carbon technologies such as electric vehicles and wind turbines.[38]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[40] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[40] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[40] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[40] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[40] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[40]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[40] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[40]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[41] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[42]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology


Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Waste management (or waste disposal) includes the processes and actions required to manage waste from its inception to its final disposal.[17] This includes the collection, transport, treatment and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, economic mechanisms.

Waste can be solid, liquid, or gaseous and each type has different methods of disposal and management. Waste management deals with all types of waste, including industrial, biological, household, municipal, organic, biomedical, radioactive wastes. In some cases, waste can pose a threat to human health.[18] Health issues are associated throughout the entire process of waste management. Health issues can also arise indirectly or directly. Directly, through the handling of solid waste, and indirectly through the consumption of water, soil and food. Waste is produced by [19] human activity, for example, the extraction and processing of raw materials.[20] Waste management is intended to reduce adverse effects of waste on human health, the environment, planetary resources and aesthetics.

Waste management practices are not uniform among countries (developed and developing nations); regions (urban and rural areas), and residential and industrial sectors can all take different approaches.[21]

Proper management of waste is important for building sustainable and liveable cities, but it remains a challenge for many developing countries and cities. A report found that effective waste management is relatively expensive, usually comprising 20%–50% of municipal budgets. Operating this essential municipal service requires integrated systems that are efficient, sustainable, and socially supported.[22] A large portion of waste management practices deal with municipal solid waste (MSW) which is the bulk of the waste that is created by household, industrial, and commercial activity.[23] Measures of waste management include measures for integrated techno-economic mechanisms[24] of a circular economy, effective disposal facilities, export and import control[25][26] and optimal sustainable design of products that are produced.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste.[30] Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

Resource recovery goes further than just the management of waste. Resource recovery is part of a circular economy, in which the extraction of natural resources and generation of wastes are minimised, and in which materials and products are designed more sustainably for durability, reuse, repairability, remanufacturing and recycling.[31] Life-cycle analysis (LCA) can be used to compare the resource recovery potential of different treatment technologies. Resource recovery can be enabled by changes in government policy and regulation, circular economy infrastructure such as improved 'binfrastructure' to promote source separation and waste collection, reuse and recycling,[32] innovative circular business models,[33] and valuing materials and products in terms of their economic but also their social and environmental costs and benefits.[34] For example, organic materials can be treated by composting and anaerobic digestion and turned into energy, compost or fertilizer.[35] Similarly, wastes currently stored in industrial landfills and around old mines can be treated with bioleaching[36] and engineered nanoparticles[37] to recover metals such as lithium, cobalt and vanadium for use in low-carbon technologies such as electric vehicles and wind turbines.[38]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[40] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[40] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[40] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[40] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[40] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[40]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[40] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[40]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[41] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[42]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology


Waste (or wastes) are unwanted or unusable materials. Waste is any substance which is discarded after primary use, or is worthless, defective and of no use. A by-product by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

Examples include municipal solid waste (household trash/refuse), hazardous waste, wastewater (such as sewage, which contains bodily wastes (feces and urine) and surface runoff), radioactive waste, and others.

What constitutes waste depends on the eye of the beholder; one person's waste can be a resource for another person.[1] Though waste is a physical object, its generation is a physical and psychological process.[1] In the United States, people who work with waste professionally use four terms – trash, garbage, refuse, and rubbish; trash is dry, garbage is wet, refuse is both, and rubbish is refuse plus construction and demolition debris.[2] The definitions used by various agencies are as below.

According to the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal of 1989, Art. 2(1), "'Wastes' are substance or objects, which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law".[3]

The UNSD Glossary of Environment Statistics[4] describes waste as "materials that are not prime products (that is, products produced for the market) for which the generator has no further use in terms of his/her own purposes of production, transformation or consumption, and of which he/she wants to dispose. Wastes may be generated during the extraction of raw materials, the processing of raw materials into intermediate and final products, the consumption of final products, and other human activities. Residuals recycled or reused at the place of generation are excluded."

Under the Waste Framework Directive 2008/98/EC, Art. 3(1), the European Union defines waste as "an object the holder discards, intends to discard or is required to discard."[5] For a more structural description of the Waste Directive, see the European Commission's summary.

There are many waste types defined by modern systems of waste management, notably including:

There are many issues that surround reporting waste. It is most commonly measured by size or weight, and there is a stark difference between the two. For example, organic waste is much heavier when it is wet, and plastic or glass bottles can have different weights but be the same size.[6] On a global scale it is difficult to report waste because countries have different definitions of waste and what falls into waste categories, as well as different ways of reporting. Based on incomplete reports from its parties, the Basel Convention estimated 338 million tonnes of waste was generated in 2001.[7] For the same year, OECD estimated 4 billion tonnes from its member countries.[8] Despite these inconsistencies, waste reporting is still useful on a small and large scale to determine key causes and locations, and to find ways of preventing, minimizing, recovering, treating, and disposing waste.

Inappropriately managed waste can attract rodents and insects, which can harbour gastrointestinal parasites, yellow fever, worms, the plague and other conditions for humans, and exposure to hazardous wastes, particularly when they are burned, can cause various other diseases including cancers. [9]Toxic waste materials can contaminate surface water, groundwater, soil, and air which causes more problems for humans, other species, and ecosystems.[10] Waste treatment and disposal produces significant green house gas (GHG) emissions, notably methane, which are contributing significantly to global warming.[7] As global warming and co2 emission increase, soil begins to become a larger carbon sink and will become increasingly volatile for our plant life. [11]

Waste management is a significant environmental justice issue. Many of the environmental burdens cited above are more often borne by marginalized groups, such as racial minorities, women, and residents of developing nations. NIMBY (not in my back yard) is the opposition of residents to a proposal for a new development because it is close to them.[12] However, the need for expansion and siting of waste treatment and disposal facilities is increasing worldwide. There is now a growing market in the transboundary movement of waste, and although most waste that flows between countries goes between developed nations, a significant amount of waste is moved from developed to developing nations.[13]

The economic costs of managing waste are high, and are often paid for by municipal governments;[14] money can often be saved with more efficiently designed collection routes, modifying vehicles, and with public education. Environmental policies such as pay as you throw can reduce the cost of management and reduce waste quantities. Waste recovery (that is, recycling, reuse) can curb economic costs because it avoids extracting raw materials and often cuts transportation costs. "Economic assessment of municipal waste management systems – case studies using a combination of life-cycle assessment (LCA) and life-cycle costing (LCC)".[15] The location of waste treatment and disposal facilities often reduces property values due to noise, dust, pollution, unsightliness, and negative stigma. The informal waste sector consists mostly of waste pickers who scavenge for metals, glass, plastic, textiles, and other materials and then trade them for a profit. This sector can significantly alter or reduce waste in a particular system, but other negative economic effects come with the disease, poverty, exploitation, and abuse of its workers.[16]

Waste management (or waste disposal) includes the processes and actions required to manage waste from its inception to its final disposal.[17] This includes the collection, transport, treatment and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, economic mechanisms.

Waste can be solid, liquid, or gaseous and each type has different methods of disposal and management. Waste management deals with all types of waste, including industrial, biological, household, municipal, organic, biomedical, radioactive wastes. In some cases, waste can pose a threat to human health.[18] Health issues are associated throughout the entire process of waste management. Health issues can also arise indirectly or directly. Directly, through the handling of solid waste, and indirectly through the consumption of water, soil and food. Waste is produced by [19] human activity, for example, the extraction and processing of raw materials.[20] Waste management is intended to reduce adverse effects of waste on human health, the environment, planetary resources and aesthetics.

Waste management practices are not uniform among countries (developed and developing nations); regions (urban and rural areas), and residential and industrial sectors can all take different approaches.[21]

Proper management of waste is important for building sustainable and liveable cities, but it remains a challenge for many developing countries and cities. A report found that effective waste management is relatively expensive, usually comprising 20%–50% of municipal budgets. Operating this essential municipal service requires integrated systems that are efficient, sustainable, and socially supported.[22] A large portion of waste management practices deal with municipal solid waste (MSW) which is the bulk of the waste that is created by household, industrial, and commercial activity.[23] Measures of waste management include measures for integrated techno-economic mechanisms[24] of a circular economy, effective disposal facilities, export and import control[25][26] and optimal sustainable design of products that are produced.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste.[30] Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

Resource recovery goes further than just the management of waste. Resource recovery is part of a circular economy, in which the extraction of natural resources and generation of wastes are minimised, and in which materials and products are designed more sustainably for durability, reuse, repairability, remanufacturing and recycling.[31] Life-cycle analysis (LCA) can be used to compare the resource recovery potential of different treatment technologies. Resource recovery can be enabled by changes in government policy and regulation, circular economy infrastructure such as improved 'binfrastructure' to promote source separation and waste collection, reuse and recycling,[32] innovative circular business models,[33] and valuing materials and products in terms of their economic but also their social and environmental costs and benefits.[34] For example, organic materials can be treated by composting and anaerobic digestion and turned into energy, compost or fertilizer.[35] Similarly, wastes currently stored in industrial landfills and around old mines can be treated with bioleaching[36] and engineered nanoparticles[37] to recover metals such as lithium, cobalt and vanadium for use in low-carbon technologies such as electric vehicles and wind turbines.[38]

Energy recovery from waste is using non-recyclable waste materials and extracting from it heat, electricity, or energy through a variety of processes, including combustion, gasification, pyrolyzation, and anaerobic digestion.[40] This process is referred to as waste-to-energy.

There are several ways to recover energy from waste. Anaerobic digestion is a naturally occurring process of decomposition where organic matter is reduced to a simpler chemical component in the absence of oxygen.[40] Incineration or direct controlled burning of municipal solid waste to reduce waste and make energy. Secondary recovered fuel is the energy recovery from waste that cannot be reused or recycled from mechanical and biological treatment activities.[40] Pyrolysis involves heating of waste, with the absence of oxygen, to high temperatures to break down any carbon content into a mixture of gaseous and liquid fuels and solid residue.[40] Gasification is the conversion of carbon rich material through high temperature with partial oxidation into a gas stream.[40] Plasma arc heating is the very high heating of municipal solid waste to temperatures ranging from 3,000 to 10,000 °C, where energy is released by an electrical discharge in an inert atmosphere.[40]

Using waste as fuel can offer important environmental benefits. It can provide a safe and cost-effective option for wastes that would normally have to be dealt with through disposal.[40] It can help reduce carbon dioxide emissions by diverting energy use from fossil fuels, while also generating energy and using waste as fuel can reduce the methane emissions generated in landfills by averting waste from landfills.[40]

There is some debate in the classification of certain biomass feedstock as wastes. Crude Tall Oil (CTO), a co-product of the pulp and papermaking process, is defined as a waste or residue in some European countries when in fact it is produced “on purpose” and has significant value add potential in industrial applications. Several companies use CTO to produce fuel,[41] while the pine chemicals industry maximizes it as a feedstock “producing low-carbon, bio-based chemicals” through cascading use.[42]

Education and awareness in the area of waste and waste management is increasingly important from a global perspective of resource management. The Talloires Declaration is a declaration for sustainability concerned about the unprecedented scale and speed of environmental pollution and degradation, and the depletion of natural resources. Local, regional, and global air pollution; accumulation and distribution of toxic wastes; destruction and depletion of forests, soil, and water; depletion of the ozone layer and emission of "green house" gases threaten the survival of humans and thousands of other living species, the integrity of the earth and its biodiversity, the security of nations, and the heritage of future generations. Several universities have implemented the Talloires Declaration by establishing environmental management and waste management programs, e.g. the waste management university project. University and vocational education are promoted by various organizations, e.g. WAMITAB and Chartered Institution of Wastes Management.

Vegetable waste being dumped in a market in Hyderabad

Weapon scraps

Agobox; Bio-medical Waste

Hospital waste

Waste collected in a tricycle

Shacks and littering by illegal immigrants in South Africa

used cigarette boxes

Recycling point at the Gdańsk University of Technology

Containers for selective waste collection at the Gdańsk University of Technology



Comments

Write a comment (no registration required)