x
1

ExoMars




ExoMars (Exobiology on Mars) es una misión espacial a Marte de astrobiología para la búsqueda de vida en ese planeta. Está compuesta de dos etapas diferenciadas y es un proyecto conjunto de la Agencia Espacial Europea (ESA) y Roscosmos, su homóloga rusa.[7][8]​ Los objetivos de ExoMars consisten en buscar pistas de vida tanto en el pasado como en la actualidad,[9]​ investigar cómo el agua y el ambiente geoquímico marciano varía con el tiempo, estudiar la composición de las trazas de gases existentes en la atmósfera así como sus fuentes de origen, a la vez que poner a prueba la tecnología para fuera viable una hipotética misión que trajera muestras de vuelta desde Marte.[10]​ La misión buscará signos de vida en Marte, pasada o presente, empleando varios elementos de la sonda, que serán enviados a Marte en dos lanzamientos. El ExoMars Trace Gas Orbiter (TGO) y un módulo de aterrizaje llamado Schiaparelli EDM fueron lanzados el 14 de marzo de 2016.[11]​ La sonda TGO soltó el módulo Schiaparelli el 19 de octubre de 2016,[12]​ y procederá a cartografiar las fuentes de metano atmosférico y otros gases en Marte, para tratar de resolver el misterio sobre la presencia de este gas y su relación con una posible actividad biológica, mientras que el aterrizador probó sin éxito algunas tecnologías de aterrizaje previstas para la misión de 2022.[13]​ La sonda TGO incorpora cuatro instrumentos y también actuará como satélite de comunicaciones.

En 2022, un módulo de aterrizaje de Roscosmos llevará hasta la superficie marciana el rover ExoMars.[7][14][15][16]​ El rover también incluirá instrumentos fabricados por Roscosmos. Las operaciones de la misión y las comunicaciones son lideradas por el centro de control de la Aerospace Logistics Technology Engineering Company (ALTEC) en Italia.[17]

La misión tiene como objetivo fundamental buscar evidencia de vida en Marte, tanto pasada como presente. Su objetivo secundario es investigar la variación en composición de la superficie, caracterizar la geoquímica y geofísica en Marte, la distribución de agua y detectar los posibles elementos peligrosos para la subsiguiente misión tripulada. El objetivo del programa es discernir si el metano descubierto es fruto de la actividad biológica de organismos que, o bien se extinguieron hace millones de años dejando metano congelado en el subsuelo del planeta, o son muy resistentes y todavía sobreviven en Marte. En este segundo caso podríamos por fin anunciar el descubrimiento de vida fuera del planeta Tierra. Pero el metano también puede originarse por procesos geológicos como la oxidación del hierro, la transformación del olivino en serpentina, a través de volcanes activos o mediante la desestabilización de clatratos -hielos que contienen gas en su interior-. ExoMars 2016, por tanto, ayudará a resolver el enigma del metano en Marte.

Europa y Rusia realizarán en octubre sus primeras maniobras de entrada y aterrizaje en Marte. Otro de los grandes retos de ExoMars 2016 sucedió también en octubre. El mismo día 16 la sonda Schiaparelli EDM se separó del orbitador TGO, con el objetivo de iniciar una maniobra de descenso y aterrizaje en el planeta rojo, una tarea que Europa y Rusia nunca han llevado a cabo. El 19 de octubre el aterrizador debía de haber alcanzado la superficie de Marte. La sonda, sin embargo, habría tenido una vida corta dado que no contaba con baterías adicionales ni posibilidad de recargarse. Desafortunadamente, un error de medida en la instrumentación provocó la colisión del aterrizador contra la superficie de Marte a una velocidad cercana a los 300 km/h. El impacto destruyó el módulo Schiaparelli y su contenido. La NASA, mediante el Mars Reconnaissance Orbiter (MRO) consiguió fotografiar el cráter de impacto producido al precipitarse el módulo Schiaparelli sobre el planeta rojo.

Su finalidad era demostrar las capacidades rusas y europeas de depositar un equipo de este tipo en el planeta rojo. De lograrlo, se habría allanado el terreno para ExoMars 2020, un robot que cuenta con instrumental de origen español como el espectrómetro RLS desarrollado por el Centro de Astrobiología (CSIC-INTA), la Universidad de Valladolid y el Instituto Nacional de Técnica Aeroespacial (INTA). La exploración espacial europea y rusa pretende así abrir una nueva etapa en la investigación sobre Marte, con el fin de descubrir trazas de vida presente o pasada sobre el planeta rojo.[12]

Para llevar a cabo estos objetivos, la agencia europea (ESA) y la agencia estadounidense (NASA) firmaron un convenio de colaboración extensivo para la exploración a largo plazo de Marte,[18][4][19][20]​ empezando con la misión ExoMars, sin embargo la NASA se retiró del proyecto en febrero de 2012, pasando a ocupar su lugar la Agencia Espacial Federal Rusa.[5]​ El plan contemplado en noviembre de 2009 es de dividir los componentes de la misión en dos lanzamientos: uno en 2016 y otro en 2018. Inicialmente se pensaba emplear cohetes estadounidenses Atlas V,[21]​ que según los últimos planes han sido sustituidos por cohetes rusos Protón-M.

En noviembre de 2008, la agencia espacial ARGO planearon los posibles sitios de descenso son:[23]

El 21 de octubre de 2015, Oxia Planum fue elegido como el lugar de aterrizaje preferido para el rover, con Aram Dorsum y Mawrth Vallis como opciones de respaldo. En marzo de 2017, el Grupo de trabajo de selección de sitios de aterrizaje redujo la elección a Oxia Planum y Mawrth Vallis, y en noviembre de 2018, Oxia Planum fue elegida una vez más, en espera de la aprobación de los jefes de los países europeos y la Agencia Espacial Rusa.[24]

El vehículo explorador ExoMars, el rover Rosalind Franklin lleva a bordo tres tipos de instrumentos: Los panorámicos, incluidas las cámaras que permitirán observar el ambiente alrededor. Después están los instrumentos de acercamiento, como cámaras microscópicas, con las cuales se observarán objetos en detalle. Principalmente, utilizará el Laboratorio Analítico "Pasteur", donde se realizarán los análisis molecular de las muestras obtenidas.[25]​ El 7 de febrero de 2019 se anunció que el nombre del rover será Rosalind Franklin, tras una elección entre más de 36.000 entradas enviadas por ciudadanos de todos los Estados miembros de la ESA.[26][27]

Se utilizaran para estudiar el ambiente marciano.

Los prototipos tienen un sistema de navegación inteligente que les permite trazar su propia ruta. Debido a la distancia existente entre los planetas, las órdenes enviadas desde la Tierra pueden llegar a tardar 20 minutos en llegar a Marte. Este retraso hace que las órdenes instantáneas de cambio de dirección no sean posibles y, por tanto, un rover debe tener autonomía para tomar decisiones. Es decir, el robot en todo momento se plantea distintas trayectorias para llegar al objetivo y decide cual es la trayectoria útil. Este robot también hace uso de una serie de sensores y cámaras de visión estereoscópica. El software también controlará a los motores de sus seis ruedas. El software genérico de navegación ha sido desarrollado por el Centro Nacional de Estudios Espaciales Francés (CNES) y el SRG.

El rover Mars Astrobiology Explorer-Cacher (MAX-C) sería construido por la NASA y aterrizaría junto con el rover ExoMars. Además de tener capacidad de análisis químicos y físicos de especímenes, el MAX-C tendría la misión de encapsular las muestras con mayor valor científico para que una posible misión en el futuro recupere esas muestras, llevándolas a la Tierra para un análisis extremadamente sofisticado y completo.




Escribe un comentario o lo que quieras sobre ExoMars (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!