x
1

Fisicoquímico



La fisicoquímica, también llamada química física, es una subdisciplina de la química que estudia la materia empleando conceptos físicos y químicos.

Según Gilbert N. Lewis, «la fisicoquímica es cualquier cosa interesante», con lo cual probablemente se refería al hecho de que muchos fenómenos de la naturaleza con respecto a la materia son de principal interés en la fisicoquímica.

La fisicoquímica representa una rama donde ocurre un cambio de diversas ciencias, como la química, la física, termodinámica, electroquímica y mecánica cuántica donde las funciones matemáticas pueden representar interpretaciones a nivel molecular y atómico estructural. Cambios en la temperatura, presión, volumen, calor y trabajo en los sistemas, sólido, líquido y/o gaseoso se encuentran también relacionados con estas interpretaciones de interacciones moleculares.

Al físico estadounidense del siglo XIX Willard Gibbs también se le considera el padre fundador de la fisicoquímica, pues en su publicación de 1876, On the Equilibrium of Heterogeneous Substances (Estudio sobre el equilibrio de sustancias heterogéneas) acuñó términos como energía libre, potencial químico y regla de las fases, que años más tarde serían de principal interés de estudio en esta disciplina.

La fisicoquímica moderna tiene firmes bases en la física pura. Áreas de estudio muy importantes en ella incluyen a la termoquímica (termodinámica química), cinética y dinámica química, química cuántica, mecánica estadística, electroquímica, magnetoquímica, energética, química del estado sólido y de superficies, y espectroscopia. La fisicoquímica forma parte fundamental en el estudio de la ciencia de materiales.

No se constituyó como especialidad independiente de química hasta principios del siglo XX. Se pueden tomar como punto de partida de la nueva especialidad las fechas de creación de dos de las primeras revistas que incorporaron este nombre a su título: la alemana Zeitschrift für physikalische Chemie, dirigida por Wolfgang Ostwald y Jacobus Henricus van 't Hoff, que inició su publicación en 1887, y la estadounidense Journal of Physical Chemistry A, dirigida por Wilder Dwight Bancroft desde 1896. A pesar de ello, durante todo el siglo XIX se realizaron notables aportaciones a algunos de los campos que habitualmente suelen reunirse como parte de la fisicoquímica, tales como la electroquímica, la termoquímica o la cinética química.

La obra de Alessandro Volta, especialmente la pila que lleva su nombre, fue el punto de partida de muchos trabajos en los que se estudió los efectos de la electricidad sobre los compuestos químicos. A principios del siglo XIX, Humphry Davy hizo pasar la corriente eléctrica a través de sosa cáustica y potasa fundida, lo que le permitió estudiar dos nuevos metales: el sodio y el potasio. Su principal discípulo y su sucesor en la Royal Institution fue Michael Faraday, que continuó las investigaciones de su maestro. En un artículo publicado en 1834, Faraday propuso sus dos conocidas leyes sobre la electrólisis. La primera afirma que la cantidad de sustancia que se deposita en un electrodo es proporcional a la cantidad de carga eléctrica que atraviesa el circuito. En su segunda ley, Faraday afirma que la cantidad de carga eléctrica que provoca el desprendimiento de un gramo de hidrógeno produce el desprendimiento de una cantidad igual al equivalente electroquímico de otras sustancias.

Los trabajos realizados por Antoine Lavoisier y Pierre-Simon Laplace habitualmente se consideran el punto de partida de la termoquímica. Diseñaron un nuevo instrumento, el calorímetro, en el que podía realizar mediciones sobre la cantidad de "calórico" desprendido durante las reacciones químicas. Laplace y Lavoisier pensaban que el calórico era uno de los elementos imponderables y que los gases eran compuestos de calórico y el elemento correspondiente. En la primera mitad del siglo XIX, se abandonó la idea del calórico y comenzaron a realizarse las investigaciones que permitieron el establecimiento de las leyes de la termodinámica. La aplicación de estas investigaciones a los procesos químicos permitió el surgimiento de la termoquímica, gracias a la obra de autores como Marcelin Berthelot o Henry Le Châtelier.

Uno de los primeros trabajos dedicados al estudio de la cinética química fue el realizado por Ludwig Ferdinand Wilhelmy sobre la velocidad de cambio de configuración de determinados azúcares en presencia de un ácido. A mediados del siglo XIX, Wilhelmy llegó a la conclusión de que la velocidad del cambio era proporcional a la concentración del azúcar y del ácido y que también variaba con la temperatura. La colaboración entre un químico, George Vernon Harcourt, y un matemático, William Esson, permitió la introducción de ecuaciones diferenciales en el estudio de la cinética química. Esson fue el introductor de los conceptos de reacciones de "primer orden", cuya velocidad es proporcional a la concentración de un solo reactivo, y de reacciones de "segundo orden", en las cuales la velocidad es proporcional al producto de dos concentraciones. En los últimos años del siglo XIX, los trabajos de Jacobus Henricus van't Hoff tuvieron una gran influencia en este y otros campos de la química. Entre sus aportaciones, se encuentra la introducción del método diferencial para el estudio de la velocidad de las reacciones químicas y su famosa ecuación que permite relacionar la velocidad y la temperatura de la reacción.

El desarrollo de la mecánica cuántica y su aplicación al estudio de los fenómenos químicos ha sido uno de los cambios más notables que se han producido en la química del siglo XX. Entre los científicos que más aportaciones han realizado en este sentido se encuentra Linus Pauling, autor de libros tan significativos como su Introduction to Quantum Mechanics, With Applications to Chemistry (1935) o The Nature of the Chemical Bond and the Structure of Molecules and Crystals (1939). Entre otras muchas aportaciones, Linus Pauling fue el introductor del moderno concepto de electronegatividad.

Los conceptos clave de la química física son las formas en que la física pura se aplica a los problemas químicos.

Uno de los conceptos clave de la química clásica es que todas las compuestos químicos pueden describirse como grupos de átomos enlazado entre sí y las reacciones químicas pueden describirse como la creación y ruptura de esos enlaces. Predecir las propiedades de los compuestos químicos a partir de una descripción de los átomos y de cómo se unen es uno de los principales objetivos de la química física. Para describir los átomos y los enlaces con precisión, es necesario saber dónde están los núcleos de los átomos y cómo se distribuyen los electrones a su alrededor.[1]
La química cuántica, un subcampo de la química física que se ocupa especialmente de la aplicación de la mecánica cuántica a los problemas químicos, proporciona herramientas para determinar la fuerza y la forma de los enlaces,[1]​ cómo se mueven los núcleos y cómo puede absorber o emitir la luz un compuesto químico.[2]​ La espectroscopia es la subdisciplina relacionada de la química física que se ocupa específicamente de la interacción de la radiación electromagnética con la materia.

Otro conjunto de cuestiones importantes en química se refiere a qué tipo de reacciones pueden producirse espontáneamente y qué propiedades son posibles para una determinada mezcla química. Esto se estudia en la termodinámica química, que establece límites en cantidades como hasta dónde puede proceder una reacción, o cuánta energía puede convertirse en trabajo en un motor de combustión interna, y que proporciona vínculos entre propiedades como el coeficiente de expansión térmica y la tasa de cambio de entropía con la presión para un gas o un líquido.[3]​ A menudo puede utilizarse para evaluar si el diseño de un reactor o de un motor es factible, o para comprobar la validez de los datos experimentales. Hasta cierto punto, el cuasi-equilibrio y la termodinámica del no equilibrio pueden describir cambios irreversibles.[4]​ Sin embargo, la termodinámica clásica se ocupa sobre todo de los sistemas en equilibrio y de los cambios reversibles y no de lo que realmente ocurre, o de la rapidez con que lo hace, fuera del equilibrio.

Qué reacciones ocurren y a qué velocidad es el tema de la cinética química, otra rama de la química física. Una idea clave en la cinética química es que para que los reactantes reaccionen y formen productos, la mayoría de las especies químicas deben pasar por estados de transición que son más altos en energía que los reactivos o los productos y sirven como barrera para la reacción.[5]​ En general, cuanto mayor sea la barrera, más lenta será la reacción. Una segunda es que la mayoría de las reacciones químicas ocurren como una secuencia de reacción elementals,[6]​ cada una con su propio estado de transición. Las preguntas clave en cinética incluyen cómo la velocidad de reacción depende de la temperatura y de las concentraciones de reactivos y catalizadores en la mezcla de reacción, así como cómo los catalizadores y las condiciones de reacción pueden ser diseñados para optimizar la velocidad de reacción.

El hecho de que la rapidez con la que se producen las reacciones pueda especificarse a menudo con sólo unas pocas concentraciones y una temperatura, en lugar de necesitar conocer todas las posiciones y velocidades de cada molécula en una mezcla, es un caso especial de otro concepto clave en la química física, que es que, en la medida en que un ingeniero necesita saberlo, todo lo que ocurre en una mezcla de un número muy grande, quizás del orden de la constante de Avogadro, 6 x 1023, de partículas puede describirse a menudo con sólo unas pocas variables como la presión, la temperatura y la concentración. Las razones precisas de esto se describen en la mecánica estadística,[7]​ una especialidad dentro de la química física que también comparte con la física. La mecánica estadística también proporciona formas de predecir las propiedades que vemos en la vida cotidiana a partir de las propiedades moleculares sin depender de las correlaciones empíricas basadas en las similitudes químicas.[4]

Algunas de las relaciones que la química física se esfuerza por resolver incluyen los efectos de:



Escribe un comentario o lo que quieras sobre Fisicoquímico (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!