x
1

Gene



Un gen es una unidad de información[1]​ en un locus de ácido desoxirribonucleico (ADN) que codifica un producto génico, ya sea proteínas o ARN. Es la unidad molecular de la herencia genética,[2][3]​ pues almacena la información genética y permite transmitirla a la descendencia. Los genes se encuentran en los cromosomas, y cada uno ocupa en ellos una posición determinada llamada locus. El conjunto de genes de una especie se denomina genoma.

Para cada locus, pueden existir varios alelos posibles (es decir, pueden tener distintas formas con distintas consecuencias). Cuando los genes se encuentran muy próximos, es menos probable que se separen en el entrecruzamiento, es decir, no se segregan en forma independiente sino en bloque. Se denominan grupos de ligamiento al conjunto de genes situados en locus próximos que se transmiten en conjunto.

Molecularmente el gen es una secuencia de nucleótidos contiguos en la molécula de ADN (o de ARN en el caso de algunos virus) que contiene la información necesaria para la síntesis de una macromolécula con función celular específica, es decir, vinculados al desarrollo o funcionamiento de una función fisiológica. Generalmente estos productos son proteínas, previo paso por ARN mensajero (ARNm), pero también ARN no codificantes, como ARN ribosómico (ARNr), ARN de transferencia (ARNt) y muchos otros con funciones reguladoras o cuya función se va conociendo poco a poco.

El concepto de gen ha ido variando a lo largo del tiempo, conforme ha avanzado la ciencia que lo estudia, la genética:

A partir de la teoría original de Mendel de la determinación de caracteres físicos específicos (por.ej., el color de la flor) mediante partículas hereditarias discretas, el concepto de gen ha evolucionado gradualmente hacia el de unidad funcional. Esto fue anunciado por primera vez en 1945 por el genetista George Beadle (1903-1989), quien propuso que cada gen era específico: la hipótesis «un gen, una proteína». Fue modificada posteriormente cuando se comprendió que los genes podían determinar además proteínas no enzimáticas y también cadenas polipeptídicas individuales (sub-unidades proteicas) y los diversos tipos de ARN involucrados en la síntesis de proteínas. El desarrollo de nuevas técnicas en la década de los sesenta y ochenta, especialmente la secuenciación del ADN y la clonación de los genes, permitió a los genetistas moleculares desentrañar la estructura precisa de los genes hasta el nivel de las bases.

Tales técnicas aportan mucha información sobre cómo se activan y desactivan los genes y sobre otros aspectos de su expresión.

Un gen es una secuencia o segmento de ADN necesario para la síntesis de ARN funcional, como el ARN de transferencia o el ARN ribosomal. Sin embargo, estos dos tipos de ARN no codifican proteínas, lo cual es hecho por el ARN mensajero. Para ello, la transcripción genera una molécula de ARN que posteriormente sufrirá traducción en los ribosomas, proceso por el cual se genera una proteína. Muchos genes se encuentran constituidos por regiones codificantes (exones) interrumpidas por regiones no codificantes (intrones) que son eliminadas en el procesamiento del ARN (splicing). En células procariotas esto no ocurre pues los genes de procariotas carecen de intrones. La secuencia de bases presente en el ARN determina la secuencia de aminoácidos de la proteína por medio del código genético.

Otros genes no son traducidos a proteína, sino que cumplen su función en forma de ARN. Entre estos, encontramos genes de ARN transferente, ARN ribosómico, ribozimas y otros ARN pequeños de funciones diversas.[8]

Algunos genes han sufrido procesos de mutación u otros fenómenos de reorganización y han dejado de ser funcionales, pero persisten en los genomas de los seres vivos. Al dejar de tener función, se denominan pseudogenes, que constituyen un recurso evolutivo para la especie, ya que son regiones de ADN quasifuncionales que pueden aceptar mutaciones (y generar nuevas funciones) sin perjuicio de las funciones que ya se desarrollan en el organismo, y pueden ser muy parecidos a otros genes del mismo organismo que sean funcionales.

La replicación del ADN se hace con extrema precisión, sin embargo pueden producirse errores, llamados mutaciones.[3]​ La tasa de errores en las células eucariotas puede alcanzar tan sólo una tasa de 10–8 mutaciones por nucleótido replicado,[9][10]​ mientras que en algunos virus de ARN la tasa puede subir hasta los 10−3.[11]​ Así, en cada generación cada genoma humano acumula aproximadamente entre 1 y 2 nuevas mutaciones.[11]​ Pequeñas mutaciones se pueden originar durante el proceso de replicación del ADN, que suelen repararse por un proceso conocido como reparación del ADN, aunque si este proceso no identificara o no corrigiera la mutación, se produciría un daño que nos llevaría a la aparición de mutaciones genéticas. Este fallo no es más que la sustitución de una base nitrogenada sustituida por otra, o bien algo mucho más peligroso, un desplazamiento del marco de lectura en las cuales se inserta o se elimina una base (o dos, el cambio afectaría menos si la deleción ocurre en tres bases, puesto que la lectura del ADN se hace por tripletes). Cualquiera de estas mutaciones pueden modificar la función del gen, dando lugar a una mutación sin sentido (cambios de un codón por otro que se traduce por un aminoácido diferente, que modifica la funcionalidad de la proteína traducida).[12]​También puede originarse una mutación sin cambio de sentido, en la cual, el codón resultante se traduce en el mismo aminoácido (el código genético es degenerado, lo que viene a significar que varias combinaciones de tripletes se traducen en un mismo aminoácido): esto sería una mutación con sentido. Se pueden causar mutaciones más grandes por errores en la recombinación, en la sinapsis o durante el proceso de meiosis o mitosis durante el reparto cromosómico, causando mutaciones cromosómicas y aneuploidías, respectivamente. Estos fallos incluyen la duplicación génica (duplicación de la carga genética de una célula al contener una copia extra del cromosoma que lo alberga), o el borrado, la reorganización y la inversión de largas secciones de una cromosoma. También el mecanismo de reparación del ADN puede introducir errores cuando trata de reparar el daño físico a la molécula de ADN.[3]:5.4

A la existencia de múltiples alelos de un gen, concurrentes en una misma población se le llama polimorfismo. La mayoría de alelos distintos funcionan de manera equivalente; sin embargo algunos puedan poseer caracteres biológicos distintos. El alelo más común de un gen se llama tipo salvaje, y a los alelos raros (infrecuentes) se les llama mutantes. La variación en frecuencias relativas de alelos diferentes en una población es consecuencia de la selección natural y la deriva genética (medidas del éxito adaptativo y del efecto estadístico respectivamente de un alelo).[13]​El alelo del tipo salvaje no es definitivamente el antepasado de los alelos menos comunes ni es necesariamente cierto que estén más adaptados.

La mayoría de las mutaciones que ocurran en genes tienden a ser neutrales porque no afectan el fenotipo del organismo. Incluso si una mutación no es neutral puede conducir a una proteína funcionalmente idéntica ya que la sustitución puede darse con un aminoácido equivalente o no perjudicial dentro de la estructura interna de la proteína que codifica. Sin embargo muchas mutaciones son perjudiciales cuando no claramente letales, siendo descartadas por la selección natural. Los trastornos genéticos resultan de mutaciones perniciosas y, a veces, debido a una mutación espontánea en el individuo afectado en una etapa temprana de su desarrollo, o bien heredados de uno o ambos progenitores en donde otra copia del gen asumía la función que el hijo hereda. Unas pocas benefician al organismo, mejorando la aptitud, e importan mucho porque ellas dirigen así la evolución adaptativa.[3]

Genes con un ancestro común más reciente, o sea unos abolengos evolutivos compartidos, se conocen como homólogos.[14]​ Estos genes aparezcan, o por la duplicación de genes adentro del genoma de un organismo, y se llaman genes paralogos, o resultan de divergencias de los genes después de un evento de especiación, se llaman genes ortologos,[3]:7.6 y muchas veces desempeñen una función que es lo mismo o semejante en organismos relacionados. Se asume a menudo que las funciones de los genes ortologos se parezcan más que las de los genes paralogos, aunque las diferencias son muy pequeñas.[15][16]

Se puede medir la relación entre genes comparando su alineamiento de secuencias de ADN.[3]:7.6 El grado de secuencia semejante entre genes homólogos se llama secuencia conservada. La mayoría de los cambios no afecten la función del gen y por esto los genes acumulan mutaciones con el paso del tiempo, por la evolución molecular neutralista. Además, cualquier selección en un gen hará que su secuencia diverja a un ritmo diferente. Los genes bajo selección estabilizadora están restringidos y, por lo tanto, cambian más lentamente, mientras que los genes bajo selección direccional cambian la secuencia más rápidamente. Las diferencias de secuencia entre genes pueden usarse para análisis filogenéticos para estudiar cómo evolucionaron esos genes y cómo se relacionan los organismos de los que provienen.[17][18]

La fuente más común de genes en las células eucariotas es la duplicación cromosómica, la cual crea variación en el número de copias de un gen que ya existe en el genoma.[19][20]​ Los genes resultantes (paralogos) luego quizás divergieran en su secuencia y también en su función. Grupos de genes formados de esta manera se llaman una familia génica. Las duplicaciones y perdidas genéticas adentro de una familia son comunes y representan una fuente mayor de la diversidad genética y la biodiversidad evolutiva.[21]​ A veces, la duplicación de genes resultará en una copia no funcional de un gen, o una copia que deba funcionar pero por las mutaciones experimenta pérdidas de funciones; tales genes se llaman pseudogenes.[3]

El genoma es el total del material genético de un organismo e incluye los genes y también las secuencias no codificantes.[22]

El tamaño del genoma y el número de genes codificantes varían enormemente entre las formas biológicas. Los genomas más pequeños ocurren en los virus, los cuales pueden tener solo dos genes codificantes para codificar sus proteínas,[23]​ y viroides, los cuales actúan como un gen singular de ARN no codificante.[24]​ Por otra parte las plantas pueden tener los genomas muy grandes,[25]​ con arroz que contiene >46 000 genes codificantes de proteínas.[26]​ El número total de genes codificantes de proteínas (el proteoma de la Tierra) se estima como 5 millones de secuencias.[27]

Aunque el número de pares de bases de ADN en el genoma humano se conoce desde la década de los 1960, la estimación del número de genes se ha cambiado durante los años por razones como cambios en la definición de que es un gen, y mejoras en los métodos usados para detectar los genes. Predicciones teóricos iniciales del número de los genes humanos se alcanzaran dos millones.[28]​ Experimentos iniciales indicaron que fueron entre 50 000-100 000 transcripciones de genes (Marcador de secuencia expresadas).[29]​ Luego, las secuencias hechas en el Proyecto Genoma Humano indicaron que muchos de los transcripciones fueron variantes alternativas del mismo gen, y el número total de genes codificantes proteínas se bajó hasta –20 000[30]​ con 13 de los genes codificantes en el genoma de la mitocondria.[31]​ Del genoma humano solo 1-2 % consistan de genes codificantes de proteínas,[32]​ con los demás siendo ADN no codificante como intrones, retrotransposones, y ARN no codificante.[32][33]

Los organismos diploides disponen de dos juegos de cromosomas homólogos, cada uno de ellos proveniente de uno de los padres, cuyos gametos (creado por meiosis) se fusionaron hacia una célula conocido como un cigoto, durante la reproducción sexual.[36]​ Por ejemplo, los gametos (óvulo y espermatozoide) del ser humano solo contienen 23 cromosomas simples, (son haploides) pero ya terminado la división celular del cigoto creado por la fertilización en cuatro células, cada célula del nuevo bebé va a tener 23 pares de cromosomas, o sea 46 cromosomas, uno de los pares procedente de la madre y otra del padre.[37]

Algunas enfermedades como la anemia drepanocítica, se pueden ocasionar por un cambio en un solo gen. Los genes pueden aparecer en versiones diferentes, con pequeñas variaciones en su secuencia: es lo que se denomina alelos. Los alelos pueden ser dominantes o recesivos. Cuando una sola copia del alelo hace que se manifieste el rasgo o el fenotipo, el alelo es dominante. Cuando son precisas dos copias del alelo, para que se manifieste su efecto, el alelo es recesivo.

Un gen es el conjunto de una secuencia determinada de nucleótidos de uno de los lados de la "escalera" del cromosoma referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas.[38]

La transferencia horizontal de genes se refiere al movimiento de genes entre los seres vivos que no es a través de la transmisión vertical de (padres/madres a hijos). La trasferencia horizontal de genes se da más comúnmente en los organismos unicelulares, pero también se da en los organismos pluricelulares.[39][40]​ Esta transferencia ha resultado ser un factor importante en la evolución de los seres vivos.[41]​ Aunque resulte sorpredente hablar de una transferencia de genes que no sea a través de la descendencia, a partir de los años 40 se acumularon evidencias de que los procariotas podían mover su material genético por medio de unas moléculas conocidas como plásmidos. Estas moléculas pueden transportar genes asociados con la fertilidad, fenotipo y metabolismo, inclusive pueden incorporar genes que ayudan a las bacterias a volverse resistentes a los antibióticos o genes virulentos que favorecen la patógenia de las bacterias. Los plásmidos no solo pueden transmitirse entre cepas procariotas sino también entre especies diferentes.[39][42]

Sin embargo los plásmidos no eran los únicos vectores de genes ya que posteriormente se descubrió que los transposones secuencias de ADN capaces de moverse a diferentes partes del genoma podían transferirse entre organismos que viven en simbiosis como por ejemplo: los líquenes, invertebrados como los insectos o crustáceos, hongos, plantas, etc.[43]​ En los humanos se ha documentado casos de transferencia horizontal de genes con nematodos parasitarios por medio de transposones.[44]​ También se hizo evidente que los agentes virales (virus, viroides y virus satélite) durante su contagio e infección podían incorporar genes de un huésped y llevarlo al de otro huésped, incluyendo otras especies.[45]​ Los virus pueden considerarse el único medio de transferencia horizontal de genes más predominante entre los seres vivos aunque sean infectivos, además los virus desarrollan partículas proteicas (viriones) que le permiten fácilmente la movilidad entre sus huéspedes. También más recientemente se ha identificado que los virus pueden recibir genes adicionales de los virus satélite que dependen de ellos para la coinfección. A su vez los plásmidos y transposones pueden recibir genes adicionales de los integrones los cuales son casetes de genes con movilidad que se encuentran en los procariotas. Esto demuestra que el movimiento de genes no solo existe en los organismos celulares sino también entre las partículas vectoras. Todas estas moléculas o partículas se les ha denominado comúnmente el mobiloma o elementos genéticos móviles.[46]

La transferencia horizontal de genes resulta ser una limitante para los evolucionistas dado a que si dos especies han intercambiado genes a lo largo de la evolución pueden aparecer como iguales en un análisis filogenético sin tener que haber compartido un ancestro en común, porque ese gen es el mismo aunque muchos otros genes no sean similares. Por esta razón a veces es ideal usar otra información para inferir grandes filogenias como la presencia o ausencia de genes, o más común incluir un gran rango de genes para el análisis filogenético. Los análisis del proteoma también pueden ser útil para determinar las relaciones filogenéticas entre los organismos que sufren transferencias horizontales de genes o tienen alta tasa de mutación genética.[39][47]

En la ingeniería genética se modifica el genoma de un organismo usando métodos de la biotecnología. Desde la década de los 1970, se han desarrolladas técnicas que específicamente agregan y editan un organismo[48]​ La ingeniería de genomas se ha desarrollado más recientemente algunas técnicas que usan los nucleases de enzimas por crear blanqueadas reparaciones de ADN en una cromosoma, o por interrumpir o editar un gen cuando la quiebra se repare.[49][50][51][52]​ La expresión semejante es biología sintética que a veces se use por referir a la ingeniería extensiva de un organismo.[53]

La ingeniería genética es ahora una herramienta de investigaciones rutina usando un organismo modelo. Por ejemplo, agregar genes a las bacterias es fácil[54]​ mientras linajes de ratón knockout con un función de gen interrumpido se usan por investigar la función de ese gen.[55][56]​ Se han modificados muchos genes por aplicaciones en la agricultura, la medicina y la biotecnología industrial.

Por organismos multicelulares, típicamente un embrión se ingeniera, lo cual crezca hasta ser un organismo genéticamente modificado adulto.[57]​ Sin embargo, los genomas en células de un organismo adulto se puede editar por usar técnicas de terapia génica para intentar curar enfermedades con causas genéticas.



Escribe un comentario o lo que quieras sobre Gene (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!