x
1

Grafeno



El grafeno es una sustancia compuesta por carbono puro, con átomos organizados en un patrón regular hexagonal, parecido al grafito. Es un material casi transparente. Una lámina de un átomo de espesor es unas 200 veces más resistente que el acero actual más fuerte, siendo su densidad más o menos la misma que la de la fibra de carbono, y unas cinco veces más ligero que el aluminio.

Es un alótropo del carbono, un teselado hexagonal plano formado por átomos de carbono y enlaces covalentes que se generan a partir de la superposición de los híbridos sp2 de los carbonos enlazados.

Los físicos Andréy Gueim y Konstantín Novosiólov recibieron el Premio Nobel de Física en 2010 por sus revolucionarios descubrimientos acerca de este material.[1][2]

Mediante la hibridación sp2 se explican mejor los ángulos de enlace, a 120°, de la estructura hexagonal del grafeno. Como cada uno de los carbonos contiene cuatro electrones de valencia en el estado hibridado, tres de esos electrones se alojan en los híbridos sp2, y forman el esqueleto de enlaces covalentes simples de la estructura.[3]

El electrón sobrante se aloja en un orbital atómico tipo p perpendicular al plano de los híbridos. El solapamiento lateral de dichos orbitales da lugar a formación de orbitales de tipo π. Algunas de estas combinaciones propician un gigantesco orbital molecular deslocalizado entre todos los átomos de carbono que constituyen la capa de grafeno.

El nombre proviene de intercambio –en el vocablo grafito– de sufijos: «ito» por «eno»: propio de los carbonos con enlaces dobles. En realidad, la estructura del grafito puede considerarse una pila de gran cantidad de láminas de grafeno superpuestas.[4]​ Los enlaces entre las distintas capas de grafeno apiladas se deben a fuerzas de Van der Waals e interacciones de los orbitales π de los átomos de carbono.

En el grafeno la longitud de los enlaces carbono-carbono es de aproximadamente 142 pm (picómetros). Es el componente estructural básico de todos los demás elementos grafíticos, incluidos el propio grafito, los nanotubos de carbono y los fullerenos.

A esta estructura también se le puede considerar una molécula aromática extremadamente extensa en las dos direcciones espaciales. Es decir, sería el caso límite de una familia de moléculas planas de hidrocarburos aromáticos policíclicos denominada grafenos.

El grafeno se utiliza como blindaje antibalas, también se utiliza para los coches irrompibles y más seguros del mundo gracias a sus componentes altamente resistentes.

En este sentido, al grafeno se le ha definido como hidrocarburo aromático policíclico infinitamente alternante de anillos de solo seis átomos de carbono. La molécula más grande de este tipo contiene 222 átomos de carbono o 37 «unidades de benceno» separadas.[5]

Las cifras de la oración anterior son las contenidas en el resumen de la cita. Debería ser: 111 átomos de carbono y 111 átomos de hidrógeno o, más simple, 222 átomos, lo cual resulta de 37 × 6 (átomos de carbono –o de hidrógeno– del benceno, de fórmula C6H6) = 222, o bien: 18,5 anillos de benceno: 18,5 x 12 (átomos del benceno) = 222.

La opción de «unidades» fue para obtener una cifra redonda (37), y por consiguiente evitar la expresión fraccionaria (18,5).

La ilustración anterior, relativa a la estructura molecular de dos mesómeros de benceno, permite mejor comprensión de lo enunciado previamente.

Entre las propiedades destacadas de este material se incluyen:[4]

El grafeno es de los materiales más duros y fuertes existentes, incluso supera la dureza del diamante y es doscientas veces más resistente que el acero. Es altamente rígido, de hecho, tiene un módulo de Young de 1 TPa. Por lo tanto soporta grandes fuerzas sin apenas deformarse. Se trata de un material ligero con una densidad de tan solo 0,77 miligramos por metro cuadrado (densidad indicada en unidades de superficie como causa de su estructura laminar). También cabe destacar que soporta grandes fuerzas de flexión, es decir, se puede doblar sin que se rompa. Para hacerse una idea de la capacidad de estas propiedades mecánicas, el premio Nobel hizo una comparación con una hamaca de grafeno de un metro cuadrado de superficie y un solo átomo de espesor. Esta hamaca de grafeno podría soportar hasta 4 kg antes de romperse (equivalente al peso de un gato). En total esta hamaca pesaría lo mismo que uno de los pelos del bigote del gato, menos de un miligramo.

Esta forma de grafeno cuenta con barras de refuerzo de nanotubos de carbono incrustadas (o "varillas") es más fácil de manipular, al tiempo que mejora las cualidades eléctricas y mecánicas de ambos materiales.

Los nanotubos de carbono funcionalizados de una o varias paredes se recubren por rotación sobre láminas de cobre y luego se calientan y enfrían, utilizando los propios nanotubos como fuente de carbono. Al calentarse, los grupos funcionales de carbono se descomponen en grafeno, mientras que los nanotubos se dividen parcialmente y forman enlaces covalentes en el plano con el grafeno, lo que agrega fuerza. Los dominios de apilamiento π – π añaden más fuerza. Los nanotubos pueden superponerse, lo que hace que el material sea un mejor conductor que el grafeno estándar cultivado por CVD. Los nanotubos unen eficazmente los límites de los granos que se encuentran en el grafeno convencional. La técnica elimina los rastros de sustrato sobre el que se depositaron láminas separadas posteriormente mediante epitaxia.

Se han propuesto pilas de unas pocas capas como un sustituto rentable y físicamente flexible del óxido de indio y estaño (ITO) utilizado en pantallas y células fotovoltaicas. [229]

En 2015, investigadores de la Universidad de Illinois (UIUC) desarrollaron un nuevo enfoque para generar formas 3D a partir de láminas de grafeno 2D planas. Una película de grafeno que se había empapado en disolvente para que se hinchara y se volviera maleable se superpuso sobre un sustrato subyacente "formador". El solvente se evaporó con el tiempo, dejando una capa de grafeno que había tomado la forma de la estructura subyacente. De esta manera, pudieron producir una gama de formas microestructuradas relativamente intrincadas. Las características varían de 3,5 a 50 μm. El grafeno puro y el grafeno decorado con oro se integraron con éxito en el sustrato.[12]

Se trata de un aerogel hecho de capas de grafeno separadas por nanotubos de carbono que ha llegado a medirse a 0,16 miligramos por centímetro cúbico. Se liofiliza una solución de grafeno y nanotubos de carbono en un molde para deshidratar la solución, dejando el aerogel. El material tiene una elasticidad y absorción superiores. Puede recuperarse completamente después de una compresión superior al 90% y absorber hasta 900 veces su peso en aceite, a una velocidad de 68,8 gramos por segundo.[13]

El repentino aumento del interés científico por el grafeno puede dar la impresión de que se trata de un material nuevo. En realidad se conoce y se ha descrito desde hace más de medio siglo. El enlace químico y su estructura se describieron durante los años 1930. Philip Russell Wallace calculó por primera vez (en 1949) la estructura electrónica de bandas.[14]​ Al grafeno se le prestó poca atención durante décadas al pensarse que era un material inestable termodinámicamente ya que se pensaba que las fluctuaciones térmicas destruirían el orden del cristal dando lugar a que el cristal 2D se fundiese. Bajo esta premisa se entiende la revolución que significó que Gueim y Novosiólov consiguiesen aislar el grafeno a temperatura ambiente. La palabra grafeno se adoptó oficialmente en 1994, después de haber sido designada de manera indistinta –en el campo de la ciencia de superficies– «monocapa de grafito».

Además, muchas nanoestructuras recientemente descubiertas, como los nanotubos de carbono, están relacionadas con el grafeno. Tradicionalmente, a estos nanotubos se les ha descrito como «hojas de grafeno enrolladas sobre sí mismas».[15]​ De hecho las propiedades de los nanotubos de carbono se explican y entienden fácilmente a partir de las inherentes al grafeno.[16][17]​ Se ha descrito también la preparación de nanotiras de grafeno mediante nanolitografía, haciendo uso de un microscopio de efecto túnel.[18]


Grafeno Superrejilla

El grafeno apilado periódicamente y su isomorfo aislante proporcionan un elemento estructural fascinante en la implementación de superredes altamente funcionales a escala atómica, lo que ofrece posibilidades en el diseño de dispositivos nanoelectrónicos y fotónicos. Se pueden obtener varios tipos de superredes apilando grafeno y sus formas relacionadas.[19]​ La banda de energía en las superredes apiladas en capas es más sensible al ancho de la barrera que en las superredes de semiconductores III-V convencionales. Cuando se agrega más de una capa atómica a la barrera en cada período, el acoplamiento de las funciones de onda electrónicas en los pozos potenciales vecinos se puede reducir significativamente, lo que conduce a la degeneración de subbandas continuas en niveles de energía cuantificados. Al variar el ancho del pozo, los niveles de energía en los pozos potenciales a lo largo de la dirección L-M se comportan de manera distinta a los de la dirección K-H.

Una superrejilla corresponde a una disposición periódica o cuasiperiódica de diferentes materiales, y puede ser descrita por un período de superrejilla que confiere una nueva simetría de traslación al sistema, impactando sus dispersiones fonónicas y posteriormente sus propiedades de transporte térmico. Recientemente, se han sintetizado con éxito estructuras uniformes de grafeno-hBN monocapa mediante patrones de litografía junto con deposición química de vapor (CVD) [20]​. Además, las superredes de grafeno-hBN son sistemas de modelos ideales para la realización y comprensión del transporte térmico de fonones coherente (en forma de onda) e incoherente (en forma de partículas) [21][22]​.

Las propiedades del grafeno son ideales para utilizarlo como componente de circuitos integrados. Está dotado de alta movilidad de portadores, así como de bajo nivel de «ruido». Ello permite que se le utilice como canal en transistores de efecto campo (FET). La dificultad de utilizar grafeno estriba en la producción del mismo material en el sustrato adecuado. Investigadores están indagando métodos tales como transferencia de hojas de grafeno desde grafito (exfoliación) o crecimiento epitaxial (como la grafitización térmica de la superficie del carburo de silicio: SiC).

En diciembre de 2008, IBM anunció que habían fabricado y caracterizado transistores que operaban a frecuencias de 26 gigahercios (GHz).[23]​ En febrero de 2010, la misma empresa anunció que la velocidad de estos nuevos transistores alcanzó los 100 GHz.[24]​ En septiembre de 2010 se alcanzaron los 300 GHz.[25]

Las publicaciones especializadas rebosan de artículos en los que se atribuye a esta estructura de carbono cualidad de «panacea universal» en la tecnología para reemplazo de dispositivos de silicio por grafeno. Pero no toda la comunidad científica comparte este optimismo. El célebre físico holandés Walter de Heer afirma:

Además, el grafeno carece de una banda de resistividad, propiedad esencial que le es inherente al silicio. Eso implica que el grafeno no puede dejar de conducir electricidad: no se puede apagar.

Cables de alta velocidad

Investigadores de la Universidad de Cambridge lograron que el grafeno fuera capaz de captar una gran cantidad de luz, lo que se puede utilizar en la creación de cables de fibra óptica muy veloces que se benefician de otra de las propiedades del material: los electrones se desplazan rápidamente en él. Así, se prometen cables de grafeno que podrían mover información cientos de veces más rápido que uno actual, lo que podría implementarse en el área de las telecomunicaciones para la instalación de redes más veloces, aumentando así la capacidad y rapidez de internet, la telefonía móvil y en definitiva, todas las comunicaciones que se llevan a cabo sobre nuestro planeta.

Superbaterías eléctricas

Quizás uno de los descubrimientos más emocionantes es el relacionado al campo de los acumuladores eléctricos, donde hoy en día la tecnología permite dispositivos que funcionan durante pocas horas hasta requerir de una carga eléctrica que puede durar otras varias horas, degradando la experiencia de uso en teléfonos móviles, tabletas y computadoras portátiles.

Pantallas táctiles flexibles

Al ser capaz de conducir electrones de muy buena forma casi sin calentarse en el proceso, investigadores de la Universidad de Texas y la Universidad de Corea del Sur descubrieron que una lámina de grafeno puede usarse en el desarrollo de pantallas táctiles, aprovechando el hecho de que una lámina de grafeno puede ser totalmente transparente, ideal para colocar por sobre un panel de píxeles sin disminuir el brillo de su retroiluminado. Además, esa delgada lámina de grafeno sensible a la conducción eléctrica y que captaría nuestros toques puede ser muy flexible, aportando a lo que podrían ser futuras pantallas táctiles flexibles, lo que bien podría acompañarse de la tecnología OLED flexible para el desarrollo de esta clase de tecnología.

Auriculares y altavoces más que profesionales

Qin Zhou y Alex Zettl son dos científicos de la Universidad de California que quieren revolucionar el mercado del audio gracias a sus auriculares y altavoces de grafeno. La idea es crear un diafragma hecho de grafeno que se coloque en medio de dos electrodos para crear un campo magnético, tras lo cual el grafeno vibra y produce sonido. Según los investigadores, sin mucho trabajo posterior para "afinar" los auriculares y darles un tratamiento especial, se consiguió un sonido a la par de productos actuales de alta calidad. Y como el diafragma de grafeno utiliza una lámina que es muy delgada, el tamaño y peso del producto también puede ser muy reducido, por lo que podrían crearse auriculares de alta calidad que al mismo tiempo sean muy pequeños y livianos.

Cámaras fotográficas mil veces más sensibles

Una cámara fotográfica actual está compuesta, básicamente, de un lente por el que pasa la luz y que luego llega a un sensor, captándola y transformándola en información digital. Lo que investigadores de la Universidad Tecnológica de Nanyang en Singapur lograron fue crear un sensor hecho de grafeno, aumentando la sensibilidad del dispositivo unas mil veces en relación a las tecnologías actuales CMOS o CCD. Estamos hablando de una mejora escandalosamente alta para lo que son sensores utilizados en cámaras profesionales y compactas, permitiendo mejores capturas en condiciones de poca luz y en general para cualquier ocasión. Además, estos nuevos sensores de grafeno consumen diez veces menos energía y son cinco veces más económicos de producir en masa que los convencionales.

Un equipo de científicos de la Universidad de Mánchester han demostrado que el óxido de grafeno, una forma modificada del grafeno, actúa como agente anticancerígeno que se dirige directamente a las células cancerosas. Gracias a esto el grafeno podría ser usado para disminuir tumores y prevenir la propagación del cáncer. Este descubrimiento sigue siendo estudiado.[27]

Esto es muy importante, ya que al día de hoy el tratamiento actual consiste en eliminar las células de la zona afectada, tanto las cancerígenas como las que no lo son. Con la ayuda del grafeno se podrían eliminar solo las células malignas, causando menos efectos secundarios en el paciente.[28]

Está en fase de investigación el uso de una lámina de grafeno con poros de 1,8 nm para sustituir las membranas en el proceso de ósmosis inversa para la desalinización del agua. Sus agujeros son tan pequeños que las moléculas de agua pueden pasar, pero no las de la sal. Según las investigaciones actuales se obtendrían eficiencias mucho mayores que con las membranas actuales, y se tendrían requerimientos menores de energía. En el estado actual, el inconveniente es el costo de las membranas de grafeno, pero se espera que en el futuro estos costos podrán ser reducidos.[29]

El problema principal que impide la explotación del grafeno es que la producción de grandes cantidades es limitada. Las diferentes técnicas tradicionales de fabricación por orden ascendente de escalabilidad son:

La calidad de las muestras va en sentido contrario al de la escalabilidad: a más escalabilidad del proceso, menor calidad de las muestras.

Recientemente, investigadores de la Universidad de Rice han conseguido sintetizar grafeno a partir del azúcar común a 800° C siendo el grafeno resultante de alta calidad. Otra nueva técnica procede del IPCPAS-Instituto de Química Física de la Academia Polaca de Ciencias, conjuntamente con el IRI-Instituto de Investigación Interdisciplinaria de Lille. La técnica de fabricación que utilizaron fue la oxidación del grafito, obteniéndose un polvo llamado óxido de grafito. Posteriormente se suspende en agua y se coloca en un limpiador ultrasónico. Los ultrasonidos separan las láminas oxidadas de grafeno y permiten la obtención de escamas de grafeno de 300 nm de espesor.

En 2011 el telescopio espacial Spitzer de la Nasa descubrió grafeno en el espacio además de otras moléculas de la familia de los fullerenos, en concreto las moléculas C60 y C70.[30]

La exposición a nanotubos de carbono reproduce en ratones de laboratorio los síntomas provocados por el asbesto, desde inflamación crónica, pérdida de las rutas supresoras de tumores, hasta desarrollo eventual y esporádico de mesotelioma maligno.[31]​ La exposición en humanos supone por tanto un riesgo significativo para la salud.[32]



Escribe un comentario o lo que quieras sobre Grafeno (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!