Maple es un programa orientado a la resolución de problemas matemáticos, capaz de realizar cálculos simbólicos, algebraicos y de álgebra computacional.
Fue desarrollado originalmente en 1981 por el Grupo de Cálculo Simbólico en la Universidad de Waterloo en Waterloo, Ontario, Canadá. Desde 1988 ha sido mejorado y vendido comercialmente por Waterloo Maple Inc. (también conocida como Maplesoft), compañía canadiense con sede en la misma localidad. La última versión es Maple 2020.
Maple se basa en un pequeño núcleo escrito en C, que proporciona el lenguaje Maple. Maple es un lenguaje de programación interpretado. Las expresiones simbólicas son almacenadas en memoria como grafos dirigidos sin ciclos. La mayoría de funcionalidades son proporcionadas por bibliotecas: unas escritas en lenguaje Maple, con acceso a su código fuente; pero también hace uso de otras bibliotecas bien conocidas como las NAG, ATLAS o GMP.
Su nombre es una abreviatura o un acrónimo de la frase en inglés Mathemathic Pleasure (‘placer de las matemáticas’), también se debe a que Maple fue hecho en Canadá, cuya bandera tiene una hoja de arce (maple en inglés).
Sujeto a las condiciones iniciales:
Desde 1994, MathCad ha incluido un motor de álgebra derivado de Maple, Núcleo Mathsoft de Maple MKN por sus siglas en inglés (MKN, Mathsoft Kernel Maple).
Estas son algunas de las características más relevantes del software:
Maplesoft vende Maple tanto en versiones profesionales como de estudiantes. (En EE. UU. desde US$99 para estudiantes, hasta US$1995 en versiones profesionales).
Desde la versión 6 y más recientes, las versiones para estudiantes no tienen limitaciones en poder de cómputo, pero sí vienen con menos documentación impresa. La situación es bastante similar para el programa Mathematica.
En versiones anteriores a la 6, la versión de estudiante tenía las siguientes limitaciones:
Las funciones son reconocidas por Maple como árboles de expresión. Maple reconoce los siguientes tipos de funciones (o sea árboles de expresión): string, integer, fraction, float, `+`, `*`, indexed y function. Si se pretende saber que tipo de árbol de expresión es una función, se puede escribir el comando whattype( ). Supóngase que se tiene una función x^2+4*x+4, y se quiere saber que tipo de árbol de expresión es para maple. Primero se escribe la función, y luego se usa el comando whattype: p:= x^2+4*x+4 whattype(p) Si se quiere saber si una determinada función es un determinado árbol de expresión, se usa la función type( , ). Por ejemplo, se quiere saber si la función p:= x^2+4*x+4 es un entero (integer). Primero se escribe la función y luego se usa el comando type: p:= x^2+4*x+4 type(p, integer)
Supóngase una función igual a x^2+4*x+4, a la cual se llame p. En Maple se debe escribir: p:= x^2+4*x+4 Si se desea saber cual es el valor de esa función cuando x es 3, se escribe: x:= 3 p; Cabe destacar que si ya no se quiere usar el valor asignado a x, se lo puede borrar de la siguiente manera: x:= 'x'
Supóngase que se tiene una función igual a x^2+4*x+4 llamada p. Se pretende encontrar la antiderivada.
Maple mostrará la antiderivada. Obviamente int significa integral.
La función nops es usada en Maple para determinar el número de operandos de una expresión. Por ejemplo, supóngase que se tiene la función x^2+4*x+4, y se quiere saber su cantidad de operandos. Primero se define la función y luego se le aplica el comando nops:
La función op es utilizada para conocer el operando que está en una posición indicada. Por ejemplo, supóngase que se tiene la función x^2+4*x+4, y se quiere encontrar el segundo operando. Primero se define la función y luego se le aplica el comando op:
Para crear un bucle, se debe seguir la siguiente estructura: [for "nombre de la expresión" ] [from "expresión" ] [by "expresión"] [to "expresión"] [while "expresión"] do "declaración de sequencia" end do [by "expresión"] por defecto es 1 Supóngase que se quiere programar bucle que imprima los cuadrados del 1 al 10. La expresión en Maple sería:
Escribe un comentario o lo que quieras sobre Maple (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)