En matemáticas, una serie es la generalización de la noción de suma aplicada a los términos de una progresión aritmética.
lo que suele escribirse en forma más compacta con el símbolo de sumatorio:
El estudio de las series consiste en la evaluación de la suma de un número finito de términos sucesivos, y mediante un paso al límite identificar el comportamiento de la serie a medida que crece indefinidamente.
Una secuencia o cadena «finita», tiene un primer y último término bien definidos; en cambio en una serie infinita, cada uno de los términos suele obtenerse a partir de una determinada regla o fórmula, o por algún algoritmo. Al tener infinitos términos, esta noción suele expresarse como serie infinita, pero a diferencia de las sumas finitas, las series infinitas requieren de herramientas del análisis matemático para ser debidamente comprendidas y manipuladas. Existe una gran cantidad de métodos para determinar la naturaleza de convergencia o no-convergencia de las series matemáticas, sin realizar explícitamente los cálculos.
Para cualquier serie matemática de números racionales, reales, complejos, funciones, etc., la serie asociada se define como la suma formal ordenada:
La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta :
Muchas de las propiedades generales de las series suelen enunciarse en términos de las sumas parciales asociadas.
Por definición, la serie converge al límite si y solo si la sucesión de sumas parciales asociada converge a . Esta definición suele escribirse como
En general, una serie geométrica es convergente si solo si y en tal caso, la serie converge a
donde .
La serie armónica es divergente.
La convergencia de dicha serie y su suma se pueden calcular fácilmente, ya que:
Por lo que
Una serie se dice que es convergente (o que converge) si la sucesión de sumas parciales tiene un límite finito. Si el límite de es infinito o no existe, se dice que la serie diverge. Cuando este límite existe, se le llama suma de la serie.
Si todos los son cero para suficientemente grande, la serie se puede identificar con una suma finita. El estudio de la convergencia de series, se centra en las propiedades de las series infinitas que incluyen infinitos términos no nulos. Por ejemplo, el número periódico
tiene como representación decimal, la serie
Dado que estas series siempre convergen en los números reales (ver: espacio completo), no hay diferencia entre este tipo de series y los números decimales que representan. Por ejemplo, 0.111… y 1/9; o bien 1=0,9999...
Escribe un comentario o lo que quieras sobre Series infinitas (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)