HDi, acrónimo de high presure direct injection es la denominación comercial utilizada por el Groupe PSA para designar a sus motores diésel de inyección directa y turbocompresor, dotados de la tecnología common-rail inventada en su día por Magneti Marelli, filial de Fiat. En el caso de PSA los equipos son suministrados por Siemens/Continental, Bosch o Delphi en distintas generaraciones de sus propias versiones de la tecnología common-rail en función de cada motorización.
En 1998 el Groupe PSA llega a un acuerdo de joint venture con Ford Motor Company para la producción de estos nuevos motores de diésel de inyección directa, motores conocidos como HDi de "segunda generación" en el caso de PSA y como TDCi en el caso de Ford. De este modo los motores montados por las marcas del Groupe PSA son idénticos a los montados por la marca Ford y Volvo cars aunque la denominación comercial varía en cada marca -Tdci en Ford, D4 en Volvo o CRTD en Mazda-. Los motores se montan en las plantas de Trémery y Douvrin en Francia -Groupe PSA- así como en las plantas de Dogenham en Inglaterra y en Skövde Suecia.
En función de los acuerdos comerciales entre ambos grupos y con terceros, mecánicas "HDí" desarrolladas por PSA han sido montadas por Opel, Fiat, Suzuki, Zastava, Mazda, Volvo, Land-Rover, Jaguar o MINI. Reciprocamente determinadas motorizaciones montadas por PSA y denominadas HDi provienen de otros fabricantes como Ford o Iveco.
Tradicionalmente, los motores diésel ofrecen un rendimiento calorífico superior a los motores gasolina lo que implica un menor consumo, generalmente a cambio de un mantenimiento mayor.
Sin embargo de cara a su utilización en turismos, los motores de combustión interna presentan una importante desventaja frente a los motores de explosión, pues a diferencia de estos el momento exacto en el que se produce la combustión es difícil y costoso de controlar.
Hasta la aparición de los inyectores con actuadores electromecánicos, los motores diésel utilizaban para ello complejas bombas de inyección mecánicas, sustancialmente distintas de las empleadas en los motores de explosión convencionales. La propia bomba, rotativa o lineal, controlaba la duración y la presión de la inyección, funcionando en el caso de las bombas lineales [1] como auténticos motores invertidos capaces de proporcionar a cada inyector una determinada cantidad de combustible en un determinado momento. Al ser los líquidos incompresibles, la presión de salida que proporcionaba la bomba se transmitía a través de cada conducto y era suficiente para vencer la resistencia del muelle del inyector, desplazando la aguja que tapaba la tobera produciéndose la inyección.
Sin embargo el sistema tenía sus limitaciones. En un motor de explosión convencional alimentado por carburador o inyección indirecta, el ciclo de trabajo está controlado con total precisión por una chispa eléctrica y se dispone de la totalidad de la carrera de admisión para realizar la aspiración o la inyección de combustible en el colector de admisión. En cambio en el ciclo diésel el motor solo aspira y comprime aire, debiendo realizarse la inyección exactamente cuando este haya alcanzado la temperatura y presión necesarias. Por esta razón en motores diésel de pequeño tamaño se utilizaban sistemas de inyección indirecta.
Estos motores recurren a situar el inyector fuera del cilindro, aunque no en el colector de admisión como en los motores de inyección indirecta de gasolina, sino en una precámara comunicada con el cilindro mediante una lumbrera. De este modo durante el ciclo de compresión el aire adquiere la presión y temperatura necesarias en el interior esta cámara, cuya forma es la ideal para que se inicie la combustión que posteriormente se extiende al cilindro a través de la lumbrera. Gracias al empleo de precámara se logran buenas prestaciones con bajas presiones de inyección sin ser necesaria una gran precisión por parte del inyector, que actúa como un simple "tapón" de la presión enviada por la bomba. PSA había desarrollado los motores TUD, XUD y DJ/DK con precámaras esféricas tipo Ricardo-Comet V, referentes mundiales en cuanto a motores de inyección indirecta mecánica.
En motores mayores se venía utilizando desde siempre la inyeccion directa, mediante inyectores o bomba-inyectores situados en el interior del cilindro y cámaras de combustión labradas en la cabeza del pistón, consiguiéndose rendimientos térmicos superiores al no desperdiciarse inútilmente calor a través los conductos de refrigeración de la culata y producirse el frente de la llama en la zona óptima. Sin embargo las presiones requeridas eran mucho mayores y la precisión difícil de lograr, lo que encarecía los equipos de inyección y aumentaba la rumorosidad y vibraciones del motor.
A partir de la segunda mitad de los años 80, los avances en tecnología diésel combinados con la ventajosa fiscalidad del combustible en Europa, donde salvo excepciones no existe combustible profesional, hicieron que las matriculaciones de vehículos diésel se disparasen. En Francia la situación no era nueva y PSA mantenía una cómoda posición dominante basada en sus excelentes TUD, XUD y DJ/DK de inyección indirecta mecánica en todos los segmentos del mercado, desde los pequeños Peugeot 106 a los grandes Citroën XM.
Fuera de Francia sin embargo una serie de acontecimientos precipitan el fin de era de la inyección con precámara, obligando a PSA a posicionarse en el mercado:
El éxito del concepto TDI llevaría a la industria a registrar múltiples denominaciones similares tales como "HDi", "TDdi", "TDCi", "Di", "CDTi", "dTi", "dCi", "CDI", "JTD", "CRDi", "DI-D", "D4D", etc. En general todas estas denominaciones son, como en el caso de VAG, puramente comerciales, englobando en muchos casos tecnologías totalmente distintas.
La irrupción del control electrónico para el control de las bombas y posteriormente de los inyectores, supuso añadir a las ventajas tradicionales un consumo de combustible menor (20% menos que un Diésel clásico con prestaciones equivalentes) y un aumento del confort y el placer de conducción. Por su parte el sistema common rail simplifica enormemente el diseño de la bomba inyectora que prescinde de mecanismos de distribución, avance y control del ralentí, mientras que la inyección directa a altas presiones es suficiente para provocar la combustión del gasoil, de modo que las bujías de precalentamiento por lo general no son imprescindibles para el arranque en frío, aunque su funcionamiento se mantiene para contribuir a la reducción de ruidos y facilitar la regeneración de los filtros de partículas.
La aparición de las mecánicas HDi supuso la respuesta del grupo PSA a la proliferación de motores diésel de inyección directa en la última década del siglo XX. Sustituyeron a los populares XUD y TUD [2], con los que convivirían algunos años.
Desde su aparición en 1998, el grupo ha utilizado esta denominación comercial en sucesivas generaciones de sus mecánicas diésel de inyección directa. A diferencia de fabricantes como General Motors o VAG que emplearon otros sistemas de inyección (bomba distribuidora o inyector-bomba) en sus primeros diésel de inyección directa, PSA ha utilizado exclusivamente variantes de la tecnología common-rail a lo largo de su evolución.
Gracias a este entonces novedoso sistema, se conseguía por fin independizar la presión de inyección de las revoluciones del motor, uno de los principales inconvenientes de la tecnología diésel tradicional, aumentando tanto el confort como las prestaciones del motor, con hasta un 50% de par motor suplementario a bajo régimen.
Para ello se recurrió a inyectores activos, inicialmente inductivos, así llamados porque actúan mediante una válvula solenoide que al abrirse pone en comunicación el circuito de retorno con la cámara de control, reduciendo la presión para elevar indirectamente la aguja y posteriormente piezoeléctricos, con actuadores piezoeléctricos más precisos y capaces de pulverizar cantidades menores. De este modo el el momento -timing- de la inyección dejaba de depender de la bomba de inyección o del árbol de levas como en los motores con bomba radial o bombainyectores. En su lugar el sistema era controlado por una centralita electrónica que mandaba a los inyectores la orden de abrirse electrohidráulicamente, con presiones de entre 1350 y 2000 bares según generación y con tal precisión que podía llevarse a cabo no solo la inyección de combustible, sino varias pre y post inyecciones para reducir ruido y vibraciones.
Mediante al control electrónico de los inyectores, el diseño de la bomba de inyección -ahora denominada "bomba de alta presión"- pudo simplificarse enormemente, multiplicando su caudal sin afectar a la fiabilidad. El gasoil era previamente transferido desde el depósito de combustible mediante una prebomba -sistemas Bosch- o por succión -sistemas Siemens- al contenedor del filtro de combustible, desde donde pasaba a la bomba de alta que proporcionaba un elevado caudal de salida a través de un único conducto. El combustible se almacenaba presurizado en un reservorio o "rampa" común para todos los inyectores -el common rail- cuya forma, cilíndrica en los sistemas Bosch o Siemens daba nombre al sistema, aunque otros fabricantes como Lucas o Delphi utilizan reservorios esféricos.
La rampa era capaz de acumular altísimas presiones -de ahí la denominacíón HDi- con independencia del caudal proporcionado para lo que inicialmente se utilizó un regulador de presión tras la bomba -Bosch- y en sistemas más modernos un regulador de caudal previo -Delphi- o ambos -Siemens-. De modo que los inyectores podían inyectar cualquier cantidad de gasoil según la orden comandada por la centralita en función del propio régimen de giro, la carga motor u otros parámetros.
Se comercializó únicamente en dos cilindradas, DW10 de 2.0 litros y DW12 de 2.2 litros en sustitución de los XUD9 y XUD11 de 1.9 y 2.1 litros.
Debutó en 1998 en Citroën Xantia en versión 2.0 Hdi 8v 110 cv "RHZ" con inyección Bosch EDC15 y turbo fijo, extendiéndose inmediatamente a los Citroën Xsara y Xsara Picasso, a los Peugeot 206, 306 y 406 y a la primera generación de Eurovan. Fue seguido ese mismo año por la variante de 2.0 Hdi 8v 90 cv "RHY" con gestión mecánica la de presión del turbo de enorme éxito comercial que montó también el Suzuki Vitara. Con la introducción de la red de multiplexado VAN-bus de PSA la inyección pasa a ser indistintamente Bosch EDC15C2 o Siemens AG SID 801, mientras que sólo para el más potente aparece una versión con FAP -"RHS"- para cumplir con la normativa Euro 3 que rendía 107 cv.
En 1999 aparece el motor 2.2 Hdi 16v de 133 cv "4HX" en el Peugeot 607, con culata de 16 válvulas, inyección Bosch, turbo de geometría variable y -por primera vez en un turismo- FAP con aditivo eolys a base de cerina de serie. Se montaría también en los Peugeot 406 y Citroën C5.
En 2002, se desarrolla una familia multiválvulas del del DW10 específica para los productos de Sevel Nord (los nuevos Eurovan 2 y la furgoneta media de PSA) que también montarían los Suzuki Vitara y Grand Vitara. La variante 2.0 HDi 16v "RHW" con culata de 16 válvulas, inyección Bosch y turbo fijo rendía 110 cv (107 cv en las versiones "RHT"/"RHM" con FAP opcional) mientras que sólo para vehículos comerciales hubo disponible una versión 2.0 HDi 8 válvulas "RHX" de 94 cv. En los monovolúmentes el DW12 "4HW", siempre con 16 válvulas, inyección Bosch, turbo de geometría variable y FAP, baja ligeramente su rendimiento respecto del "4HX" hasta los 128 cv.
Igualmente la gama de vehículos comerciales grandes de Sevel Sud recibe ese mismo año una nueva familia de motores HDi de 8 válvulas en ambas cilindradas, DW10 2.0 HDi 84 cv "RHV" y DW12 2.2 HDi 100 cv "4HY".
Los vehículos del grupo Fiat con estos motores fueron denominados comercialmente 2.0 JTD, 2.0 16v JTD, 2.2 JTD y 2.2 16v JTD.
La primera generación de motores HDí comparte múltiples componentes de inyección Bosch o Siemens con mecánicas de otros fabricantes como los "d" de BMW, los JTD unijet de Fiat, o los Renault y Mercedes en sus primeros dCi y CDI.
La segunda generación sustituyó tanto a los motores TUD como a la primera generación de HDi de PSA. Se comercializaron a partir de 2003 con la mirada puesta en el cumplimiento de la norma de control de contaminación Euro 4 (vigente desde el 1 de enero de 2006).
Aparecen inicialmente sobre las cilindradas 2.0 -DW10- y 2.2 -DW12- de los HDi de primera generación sobre los se benefician de una mayor potencia y un mayor par con unos consumos similares, así como de una declinación industrial del motor 2.2 denominada Puma 16V. Posteriormente aparece la gama de motores de bajas cilindradas 1.4 -DV4- y 1.6 -DV6- para sustituir a los TUD.
Emplean también sistema common rail suministrado ahora por Bosch EDC1634, Siemens/Continental SID 802/803 o Delphi DCM3.4, con inyectores piezoeléctricos en vehículos con inyección Siemens o inductivos en los sistemas Bosch y Delphi, turbos de geometría variable y se popularizaron las culatas multiválvulas. Igualmente se universaliza el uso del volante motor bimasa ya presente en algunas aplicaciones de la primera generación.
En Ford, la tecnología equivalente de estos motores diésel se conoce como TDCI. No se ofrecen con potencias y pares estrictamente idénticos a los HDi del grupo PSA, aunque son sustancialmente similares. El desarrollo y fabricación del motor motor V6 2.7 DT17 corrió a cargo de Ford en solitario en la planta inglesa de Dagenham. Estos motores están presentes bajo el capó de muchas marcas: Peugeot, Citroën, Ford, Volvo, Mazda pero también Jaguar y Land Rover, estas dos últimas marcas siguen perteneciendo al grupo Ford durante el desarrollo de estos motores. El Mini recuperó el 1.6 HDi en su versión de 110 caballos pero con una caja de cambios desarrollada por BMW.
En 2009 todos los motores pasan a cumplir con la normativa antipolución Euro 5, suponiendo la implantación junto al catalizador, ya presente en la generación anterior, de un FAP optimizado en todos los motores así como modificaciones en las culatas, reduciéndose la compresión e implantándose una inyección delphi capaz de inyectar hasta 2000 bares. El motor 2.7 aumenta su cilindrada hasta los 3.0 litros
En el año 2012 Ford sustituyó los motores de 1.4 L y 1.6 L por un 1.5 L de origen propio debido al acercamiento de PSA a General Motors que culminó con la compra de Opel por el grupo galo. El deterioro de la relación entre las marcas llevó a cada grupo a diseñar sus propios motores, lanzando PSA su propio 1.5 L en el año 2018. La posterior fusión de PSA con el tercer gigante americano Chrysler, ya en manos de Fiat Chrysler Automobiles y la pérdida de mercado de las mecánicas diésel han reducido paulatinamente la gama de mecánicas HDi.
A partir de 2013 comienza la transición a la normativa Euro 6 con lo que la denominación comercial pasa a ser BlueHDi en referencia a la implantación de la adición de AdBlue para reducir las emisiones de óxidos de nitrógeno (NOx). Desaparecen paulatinamente los motores 1.4, 1.5, 2.2 y V6, concentrándose la gama en los motores 1.6 BlueHDi con 75/90/110 ó 115 cv y en el 2.0 BlueHDi con 135/150 ó 180 cv.
Desde su presentación en 1998, los motores HDi apostaron por la tecnología common rail -solo un año después de la aparición del primer turismo dotado de inyección common rail, el Alfa 156 JTD- que ha terminado imponiéndose a las alternativas utilizadas por la competencia.
Frente a la inyección mediante bomba distribuidora e inyectores mecánicos empleada inicialmente por Ford en sus TDDi, Opel en sus Dti o Vag en los TDI originales, los motores common-rail se beneficiaron del uso de un reservorio de combustible presurizado y de inyectores activos gestionados por una centralita electrónica y accionados electromecánicamente. Esta tecnología supone una diferencia radical de cara al usuario, pues:
Por contra, el funcionamiento de la inyección directa mediante bomba distribuidora es similar al de inyección indirecta tradicional pero trabajando a una presión mucho mayor. Consta de una bomba de inyección que distribuye a cada una de las tuberías de los inyectores una determinada cantidad de gasóleo en un determinado momento y de unos inyectores pasivos que se abren o cierran en función de la presión enviada por la bomba. Para ello se basan en el principio de incompresibilidad de los líquidos y en la tensión del muelle del inyector. Cuando la bomba inyecta, la presión se transmite por el conducto venciendo la resistencia del muelle haciendo que se eleve la aguja y se produzca la inyección.
Estos motores no pudieron despegar hasta que Bosch desarrolló sus primeras bombas VE radiales para inyección directa, más simples que las antiguas bombas lineales y que permitían incorporar válvulas electrónicas para la gestión del caudal y del avance. Sin embargo presentan desventajas insalvables frente al common rail:
El mítico motor 1.9 TDI de primera generación, con bomba distribuidora, de VAG es un ejemplo de este tipo de motores, excelente en términos de consumos y fiabilidad pero incapaz de adaptarse a la normativas anticontaminación modernas y de tacto muy áspero.
Dadas las limitaciones del sistema, VAG optó en solitario por adoptar la inyección mediante Inyector unitario que también venía siendo usada desde antiguo en aplicaciones industriales. El accionamiento mecánico para lograr la presión necesaria es producido por un émbolo integrado en el inyector empujado por una leva o balancín desde un árbol de levas, que puede o no ser el mismo que el encargado de la apertura y cierre de las válvulas. En el caso de VAG los inyectores equipaban un actuador piezoeléctrico que abría el circuito de retorno para permitir elevar la aguja por diferencia de presiones como en los inyectores common rail.
Las ventajas de este tipo de inyección ya en desuso eran su elevada presión de inyección (hasta 2.300 bar frente a los 1.500 de los inyectores common rail coetáneos), permitiendo una mejor pulverización del gasoil con una relación prestaciones/consumo insuperable, junto a la ausencia de línea de alta presión lo que simplificaba el diseño de los equipos. Sin embargo también presenta desventajas frente al common rail, por lo que VAG dejó de utilizarlo a partir de 2010:
Frente a ambos sistemas, la simplicidad general de la bomba de alta presión y la fiabilidad y flexibilidad que pese a reticencias iniciales han demostrado los inyectores de actuación electromagnética o piezoeléctrica han hecho que el sistema common-rail se universalice.
En el caso de las motorizaciones HDi de PSA además se dispuso de un sistema de control de emisiones mediante catalizador y FAP con aditivo eolys a base de cerina mucho más económico de reparar que los sistemas de Filtro antipartículas puramente pirolíticos sin aditivo de la competencia. En el caso de los vehículos PSA, gracias a la utilización del aditivo el filtro se encuentra detrás del catalizador en un lugar fácilmente accesible, siendo el cartucho además fácilmente sustituible. A cambio es necesaria la reposición de aditivo y del cartucho cada determinado número de kilómetros.
Los HDi superaron a sus antecesores, los excelentes TUD y XUD de PSA, estando no solo a la par de los motores gasolina sino incluso superándolos en aceleración/recuperación y también en relación cilindrada/potencia convirtiéndose en mecánicas aspiracionales en términos de mercadotecnia -un ejemplo sería la mecánica 2.2 HDi de 205 CV que utilizó el Peugeot 508-.
No obstante los motores HDi no han estado exentos de problemas, algunas de sus averías características fueron:
Algunos modelos que han utilizado mecánicas HDi:
Peugeot: el 206, el 207 Compact, 307, 308,406, 407, 408, 508, 3008, 5008, Partner, Expert, Boxer, etc.
Citroën: el antiguo C3, C4, C4 Lounge, C4 Picasso, Grand C4 Picasso, Xsara, Xsara Picasso, Berlingo, Jumper.
Suzuki: Vitara y Gran Vitara
Zastava: Florida HDI
Sevel Nord: Fiat S.p.A. y Groupe PSA:Eurovan (Sevel) en sus dos generaciones y Furgoneta mediana (Sevel) en sus tres generaciones
Sevel Sud: Fiat S.p.A. y Groupe PSA: Furgoneta grande (Sevel) en su segunda y tercera generación
Los motores existentes a lo largo de las distintas HDi son: 1.4 de 70CV; 1.6 de 75CV, 90CV y 110CV; 2.0 de 90CV, 110CV (en el caso de la Peugeot 807 y Citroën C8), 138CV, 150CV, 165 CV; 2.2 (y anteriormente 2.7) de 136CV: 3.0 V6 de 240CV. Los 1.4, los 1.6 de 75 y 90CV el 2.0 de 90CV y 110CV con turbo de geometría fija, mientras que el resto de los motores HDi tienen turbo de geometría variable. Con respecto al medio ambiente, logran una disminución de emisiones nocivas, ya que las emisiones de humos son casi nulas en el 95% de los regímenes de utilización del motor. También se logran reducciones de un 40% en monóxido de carbono y de un 60% en emisión de partículas. Actualmente los recientemente desarrollados motores Blue HDI que funcionan con AdBlue presentan un mayor rendimiento, mejorando la relación cilindrada/potencia con una simultánea reducción de emisiones y consumos (sobre este último ítem se obtiene una merma del orden del 20%).
Escribe un comentario o lo que quieras sobre HDi (directo, no tienes que registrarte)
Comentarios
(de más nuevos a más antiguos)