x
1

Cerebro



El cerebro (del latín cerebrum, con su raíz indoeuropea «ker», cabeza, en lo alto de la cabeza y «brum», llevar; teniendo el significado arcaico de lo que lleva la cabeza) es un órgano que centraliza la actividad del sistema nervioso y existe en la mayor parte de los animales.[1]

El cerebro se encuentra situado en la cabeza; por lo general, cerca de los principales órganos de los sentidos como la visión, la audición, el equilibrio, el gusto y el olfato. Corresponde, por tanto, al encéfalo de los humanos y otros vertebrados y se subdivide en cerebro anterior, medio y posterior. En otros animales, como los invertebrados bilaterales, se entiende como cerebro a una serie de ganglios alrededor del esófago en la parte más anterior del cuerpo, (véase protóstomos e hiponeuros) comprendidos por el protocerebro, deutocerebro y tritocerebro en artrópodos, ganglios cerebral, pleural y pedial en moluscos gasterópodos y masas supraesofágica y subesofágica en moluscos cefalópodos. También poseen cerebros muy arcaicos o simples bilaterales como platelmintos, nemátodos o hemicordados. Sin embargo, hay bilaterales que muestran muy pocos rasgos distintivos de cefalización como los bivalvos o briozoos. En algunas especies de invertebrados no existe un cerebro por carecer completamente de sistema nervioso, como los poríferos, los placozoos, los mesozoos, y otros, aunque poseen un sistema nervioso, carecen de rasgos definidos de centralización o cefalización al mostrar simetrías no bilaterales como los cnidarios, ctenóforos o equinodermos.[2]

Desde un punto de vista evolutivo y biológico, la función del cerebro como órgano, es ejercer un control centralizado sobre los demás órganos del cuerpo. El cerebro actúa sobre el resto del organismo por la generación de patrones de actividad muscular o por la producción y secreción de sustancias químicas llamadas hormonas. Este control centralizado permite respuestas rápidas y coordinadas ante los cambios que se presenten en el medio ambiente. Algunos tipos básicos de respuesta tales como los reflejos pueden estar mediados por la médula espinal o los ganglios periféricos, pero un sofisticado control intencional de la conducta sobre la base de la información sensorial compleja requiere la capacidad de integrar la información de un cerebro centralizado.

El cerebro de los vertebrados es el órgano más complejo del cuerpo. En un humano típico, la corteza cerebral se estima que contiene 16.000 millones de neuronas y todo el encéfalo contiene 86.000 millones.[3][4]​ Estas neuronas se comunican con otras a través de fibras largas de protoplasma llamadas axones, las cuales llevan trenes de impulsos eléctricos denominados potenciales de acción a partes distantes del cerebro o del resto del cuerpo. El punto de contacto entre las prolongaciones de dos neuronas que se comunican recibe el nombre de sinapsis.

Desde una perspectiva filosófica, lo que hace al cerebro especial en comparación con los otros órganos, es que forma la estructura física en donde se presenta el correlato material de las distintas actividades de la mente.

Durante las primeras etapas de la psicología, se creyó que la mente debía separarse del cerebro. Sin embargo, posteriormente, los científicos realizaron experimentos que llegaron a determinar que la mente era un componente en el funcionamiento cerebral, por la expresión de ciertos comportamientos basados en su medio ambiente externo y el desarrollo de su organismo.[5]​ Los mecanismos por los cuales la actividad cerebral da lugar a la conciencia y al pensamiento son muy difíciles de comprender: a pesar de los múltiples y rápidos avances científicos, mucho acerca de cómo funciona el cerebro sigue siendo un misterio. En la actualidad, las operaciones de las células cerebrales individuales son comprendidas con más detalle, pero la forma en que cooperan entre los conjuntos de millones ha sido muy difícil de descifrar. Asimismo, los enfoques más prometedores tratan el cerebro como una «computadora biológica», totalmente diferente en el mecanismo de las computadoras electrónicas, pero similar en el sentido que adquieren la información del mundo circundante, la almacenan y la procesan de múltiples formas.

Sin embargo, pese a ser uno de los órganos más estudiados, se han desarrollado una serie de conceptos erróneos que han llegado a ser asimilados por la sociedad como correctos; como es el caso del mito que dice, que los humanos solamente utilizamos un 10 % del cerebro.[6]

En este artículo se comparan las propiedades de los cerebros de toda la gama de especies animales, con una mayor atención en los vertebrados y el ser humano. Existe un artículo específico para el cerebro humano.

El cerebro es el mayor órgano del sistema nervioso central y forma parte del centro de control de todo el cuerpo. También es responsable del pensamiento, la memoria, las emociones, el habla y el lenguaje. También es el responsable de los reflejos y el control del cuerpo. Pesa entre 1.300 y 1.500 gramos. Eso representa entre el 0,8% y 2% de la masa corporal de una persona.[7][8]

En los vertebrados el cerebro se encuentra ubicado en la cabeza, protegido por el cráneo y en cercanías de los aparatos sensoriales primarios de la visión, el oído, el olfato, el gusto y el sentido del equilibrio.
En los vertebrados el encéfalo se divide en tres partes: cerebro, cerebelo y tronco cerebral. En ocasiones se utiliza erróneamente el término "cerebro" como sinónimo de encéfalo, en realidad el cerebro solamente es una parte del encéfalo. Nuestro cerebro representa solo el 2% de nuestro peso corporal y consume el 20% de energía, es el órgano más grasoso del cuerpo y en el existen más de 10 000 tipos específicos de neuronas.

Los cerebros son sumamente complejos. La complejidad de este órgano emerge por la naturaleza de la unidad que nutre su funcionamiento: la neurona. Estas se comunican entre sí por medio de largas fibras protoplasmáticas llamadas axones, que transmiten trenes de pulsos de señales denominados potenciales de acción a partes distantes del cerebro o del cuerpo depositándolas en células receptoras específicas.

Los cerebros controlan el comportamiento provocando la contracción de los músculos, o estimulando la secreción de sustancias químicas como algunas hormonas. Incluso los organismos unicelulares pueden ser capaces de obtener información de su medio ambiente y actuar en respuesta a ello.[9]

Las esponjas que no poseen un sistema nervioso central, son capaces de coordinar las contracciones de sus cuerpos y hasta su locomoción.[10]

Si se observa a simple vista un corte del cerebro pueden apreciarse dos zonas de aspecto diferente. Una de ellas de color más oscuro se llama sustancia gris y está formada por los cuerpos neuronales, la otra más clara se llama sustancia blanca y está constituida por los axones cubiertos de mielina que parten de las neuronas para transmitir el impulso nervioso. La sustancia blanca está formada por las vías por la que se transmite la información a distancia dentro del sistema nervioso, mientras que la sustancia gris se constituye por los cuerpos de las neuronas que es donde se generan los impulsos.[11]

En la superficie del cerebro de los vertebrados se encuentra la corteza cerebral que está formada por sustancia gris, por debajo se sitúa una masa central de sustancia blanca que envuelve un conjunto de núcleos de sustancia gris situados en el centro del cerebro, entre los que se incluye el tálamo y los llamados ganglios basales o núcleos basales.[11]

La neurona es la unidad básica sobre la que está construido el cerebro. Según estudios recientes un cerebro humano medio dispone de alrededor de 86.000.000.000 de neuronas.[12][13]​ Una neurona no es más que una célula que se ha especializado en la transmisión de los impulsos nerviosos, consta de un cuerpo celular o soma, un gran número de pequeñas prolongaciones llamadas dendritas y una prolongación principal que puede ser muy larga y recibe el nombre de axón, el cual a su vez puede ramificarse en muchas ramas al final de su recorrido. El axón se forma en un engrosamiento del cuerpo celular y se extiende a distancias variables que oscilan entre algunos micrómetros y más de un metro en algunas neuronas de ciertas localizaciones. Las conexiones que se establecen entre dos neuronas reciben el nombre de sinapsis. Según el principio de conectividad específica establecido por Ramón y Cajal, las neuronas no se conectan entre sí aleatoriamente, sino que establecen conexiones específicas en determinados lugares con otras células nerviosas, por lo que la aparente maraña de ramificaciones que se observa cuando se mira a través del microscopio una muestra de tejido cerebral no es un conjunto de conexiones al azar, sino una red de contactos entre células perfectamente organizado que es la que hace posible el funcionamiento del sistema nervioso y todas las actividades cerebrales.[14]

Cada neurona integra continuamente numerosos impulsos eléctricos que recibe a través de sus dendritas y emite una respuesta única a través de su axón. Existen neuronas sensitivas que captan la información procedente de los diferentes sentidos y neuronas motoras que emiten impulsos que generan los movimientos musculares voluntarios, pero la mayor parte de las que existen en el cerebro son interneuronas que forman parte de circuitos anatómicos muy precisos.[14]

Un neurotransmisor es una sustancia química producida por las neuronas que se libera al espacio sináptico de una sinapsis química por la acción de un impulso nervioso o potencial de acción. Interacciona con un receptor específico en la neurona postsináptica donde produce una determinada respuesta que puede ser excitatoria o inhibitoria. Los neurotransmisores son un aspecto fundamental en la función del cerebro.[15]

Existen diferentes sustancias que actúan como neurotransmisores, algunas de las más importantes son las siguientes: GABA, acrónimo de ácido g-aminobutírico, serotonina, acetilcolina, dopamina, noradrenalina y endorfina. Las vías dopaminérgicas, por ejemplo, son rutas de neuronas que funcionan con la dopamina como neurotransmisor. Estas vías son de gran interés en la función del cerebro y se ha comprobado que su alteración puede provocar diferentes enfermedades, entre ellas la enfermedad de Parkinsón.[16][17]

El cerebro forma parte del sistema nervioso. El sistema nervioso se divide en dos partes: sistema nervioso central formado por el encéfalo y la médula espinal y el sistema nervioso periférico constituido por los nervios motores y sensitivos que parten del sistema nervioso central. El encéfalo humano se divide en tres partes: cerebro, cerebelo y tronco cerebral. De ellas el cerebro es la de mayor peso y volumen.[18]

El cerebro humano está dividido en dos hemisferios, uno derecho y otro izquierdo, separados por la cisura interhemisférica y comunicados mediante el cuerpo calloso. La superficie se denomina corteza cerebral y está formada por plegamientos denominados circunvoluciones constituidas de sustancia gris. Subyacente a la misma se encuentra la sustancia blanca. En zonas profundas existen áreas de sustancia gris conformando núcleos como el tálamo, el núcleo caudado y el hipotálamo. Cada hemisferio cerebral posee varias cisuras que dividen la corteza cerebral en lóbulos.[19]

El cerebro humano posee en su interior 4 ventrículos cerebrales intercomunicados que están llenos de un líquido claro llamado líquido cefalorraquídeo.[20]

Cada hemisferio posee varias cisuras que subdividen el córtex cerebral en lóbulos:

Aparte de estos cuatro lóbulos muy conocidos porque comparten los nombres de los cuatro huesos de la bóveda craneana, podemos encontrar un lóbulo más llamado lóbulo de la Ínsula, que no es visible desde el exterior. Este lóbulo se encuentra en la parte interna del cerebro; se puede observar abriendo la cisura de Silvio.

El tálamo está situado por encima del tronco del encéfalo, casi en el centro del cerebro. Mide alrededor de 3 cm de largo y está formado por materia gris es decir el soma de células neuronales. Cumple la función de estación de relevo de las señales nerviosas y centro de integración donde se procesan los impulsos sensoriales antes de continuar su recorrido hasta la corteza cerebral. También recibe señales que siguen la dirección opuesta y llegan al tálamo procedente de la corteza cerebral.[21]

El hipotálamo es una pequeña región del cerebro formada por sustancia gris. Está situado inmediatamente debajo del tálamo. Tiene el tamaño aproximado de una almendra y desempeña importantes funciones, entre ellas enlazar el sistema nervioso con el sistema endocrino a través de la hipófisis.[21]

Los ganglios basales en realidad deberían llamarse núcleos basales pues no son verdaderos ganglios. Son un conjunto de estructuras cerebrales formadas por sustancia gris que están situados debajo de la corteza y desempeñan importantes funciones, una de las principales es el control de los movimientos voluntarios, pero también intervienen en el procesamiento de la información sensorial y en aspectos relacionados con la memoria y las emociones. Están conectados con la corteza cerebral y funcionan con un alto grado de integración. Pueden diferenciarse los siguientes: [22]

El hipocampo es una estructura cerebral que desempeña importantes funciones en la memoria y la orientación espacial. Está formado por materia gris y procede del lóbulo temporal, aunque se ubica por debajo de la corteza cerebral. Debe su nombre a que su forma recuerda en cierto modo a la de un caballito de mar. El hipocampo forma parte del sistema límbico y es una de las pocas regiones del cerebro en la que se produce el fenómeno de la neurogénesis (formación de nuevas neuronas).[23]

El cuerpo calloso es una importante estructura del cerebro que está formada por fibras que actúan como vía de comunicación entre el hemisferio cerebral derecho y el izquierdo, con la finalidad de que ambos funcionen de forma conjunta y complementaria.[24]

La cápsula interna es un grueso conjunto de fibras nerviosas tanto ascendentes como descendentes que comunican la corteza con las regiones inferiores del sistema nervioso central, las fibras son de origen diverso, pero muchas de ellas transportan información motora o sensitiva. En su trayecto pasan cerca de la región del tálamo y los ganglios basales. La cápsula interna es una región muy sensible, cualquier lesión en esta zona daña numerosas fibras nerviosas y provoca en consecuencia déficits neurológicos graves.[21]

Hipocampo

Núcleo caudado

Cuerpo calloso

Diencéfalo (tálamo e hipotálamo)

El cerebro procesa la información sensorial, tanto la visual como la táctil, auditiva y olfatoria. Las áreas motoras controlan y coordinan el movimiento, mientras que las áreas de asociación son las responsables de funciones complejas como la memoria y el razonamiento. Los ganglios basales actúan en la coordinación del movimiento, mientras que el sistema límbico es responsable de las respuestas emocionales. Aunque ciertas zonas del cerebro se encargan de determinadas funciones, se trata de un sistema con alto grado de integración que se relaciona además con otras partes del encéfalo como el cerebelo encargado de coordinar secuencias complejas de movimientos iniciados por las áreas motoras y el tronco del encéfalo.[21]

La función motora del cerebro se lleva a cabo principalmente a través de la vía piramidal o corticoespinal, un grupo de fibras nerviosas que parten de neuronas situadas en la corteza motora primaria situada en la parte posterior del lóbulo frontal y terminan en el asta anterior de la médula espinal, donde enlazan con una segunda neurona de la que parten axones que confluyen en los diferentes nervios motores que hacen posible el control voluntario de la musculatura de todo el cuerpo. La vía piramidal se cruza en la base del tronco del cerebro, en la llamada decusación de las pirámides, de tal forma que las fibras provenientes del hemisferio cerebral derecho controlan los músculos de la mitad izquierda y las del hemisferio cerebral izquierdo la mitad derecha. Esta vía es de gran importancia pues es la que permite realizar los movimientos necesarios para la mayor parte de las funciones vitales, entre ellas desplazarse, hablar, masticar, etc. Si se lesiona la vía piramidal se produce parálisis de los músculos correspondientes.[21]

El dolor se define como una experiencia sensorial y emocional desagradable relacionada con un daño tisular real o potencial. Tiene la función de aviso o advertencia para informar de un peligro que se debe evitar, previniendo de está forma lesiones más graves.

La sensación de dolor se inicia en determinados receptores situados en los tejidos que reciben el nombre de nociceptores y son sensibles al daño tisular. Los impulsos nerviosos generados por estos receptores llegan a través de los nervios sensitivos hasta el asta posterior de la médula espinal, desde donde suben a través de un haz de fibras nerviosas llamado espino talámico hasta alcanzar el encéfalo. Llegan primero a la región del tálamo, desde donde alcanzan la corteza sensitiva del lóbulo temporal que es donde la señal se procesa y la sensación de dolor se hace consciente.[25]

Existen diferentes enfermedades de origen congénito en las que las personas afectadas son incapaces de percibir el dolor. Este grupo de trastornos se conoce genéricamente como insensibilidad congénita al dolor, suele acompañarse de falta de sensibilidad a la temperatura y provoca importantes problemas de salud, entre ellos lesiones ósea o en la piel que pasan desapercibidas pues la persona no siente dolor alguno tras traumatismos graves y continua su actividad habitual sin percatarse de que ha sufrido una fractura ósea o una herida.[26][27]

En los lóbulos parietales se desarrolla el sistema emocional y el sistema valorativo. El sistema emocional –aunque compromete a todo el cerebro, y en retroalimentación, a todo el cuerpo del individuo– se ubica principalmente en el área bastante arcaica llamada sistema límbico, dentro del sistema límbico las dos amígdalas cerebrales, se focalizan las emociones básicas (temor, agresión, placer) que tenemos y que damos cuando algo o alguien interfiere en la actividad que esté haciendo en el exterior. Por otra parte está el sistema valorativo, este es la relación que existe entre los lóbulos prefrontales (que como su nombre lo indica está atrás de la frente) y las amígdalas cerebrales, esa relación "física" se llama hipocampo.

La gran mayoría de los procesos que permiten el lenguaje se llevan a cabo en diferentes áreas de asociación. Existen dos áreas bien identificadas, las cuales son consideradas vitales para la comunicación humana: el área de Wernicke y el área de Broca. Estas áreas están localizadas en el hemisferio dominante (que es el izquierdo en el 97% de las personas) y son consideradas las más importantes en cuanto a procesamiento de lenguaje. Esta es la razón por la cual el lenguaje es considerado como una función lateralizada.[28]​ Sin embargo, el hemisferio no dominante también participa en el lenguaje, aunque existen cuestionamientos acerca del nivel de participación de las áreas localizadas en dicho hemisferio.[29]

El área de Wernicke, se conoce así en honor al neurólogo que la describió por primera vez. Está especialmente desarrollada en el hemisferio dominante para el lenguaje, que, generalmente suele ser el lado izquierdo. El desarrollo de esta área permite alcanzar niveles altos de comprensión y procesar la mayor parte de las funciones intelectuales del cerebro. Se encarga de la decodificación de lo oído y de la preparación de posibles respuestas. Es importante para la comprensión de palabras y en los discursos significativos.

Da paso después al área de Broca, también conocida como el área motora de las palabras, que se conecta con el área de Wernicke mediante el fascículo longitudinal superior. Se ubica en la corteza prefrontal, en la parte anterior de la porción inferior de la corteza motora primaria, cercana a la fisura lateral (FL). En la mayoría de los casos, es dominante en el lado izquierdo del cerebro. Su función es permitir la realización de los patrones motores para la expresión de las palabras, articulando el lenguaje hablado y también el escrito. Es la responsable de la formación de las palabras en la que se activa el accionamiento de los músculos fonadores, es decir laríngeos, respiratorios y de la boca, para asegurar la producción de sonidos articulados, lo que tiene lugar en el área motora primaria, de donde parten las órdenes a los músculos fonadores. Además se conecta con el área motora suplementaria, que tiene relación con la iniciación del habla.

Aun cuando ambos hemisferios humanos son opuestos, no son la imagen geométrica invertida uno del otro. Desde un punto de vista puramente morfológico son asimétricos. Esta asimetría depende de una pauta de expresión génica también asimétrica durante el desarrollo embrionario del individuo y se ha comprobado que no es exclusiva de la especia humana, pues está presente, aunque en menor grado, en parientes cercanos en la filogenia al humano como puede ser el chimpancé.[30]

El estudio de impresiones craneales de antepasados del género Homo tiene entre sus objetivos determinar la presencia o no de asimetría en el telencéfalo, puesto que es un rasgo de aumento de la especialización, de una capacidad cognitiva más compleja.[31]

Las diferencias funcionales entre hemisferios son mínimas y solo en algunas pocas áreas se han podido encontrar diferencias en cuanto a funcionamiento, existiendo excepciones en personas que no se observaron diferencias. Se ha dicho que el lenguaje y la lógica (las áreas actualmente más conocidas especializadas en el lenguaje son la Broca y la de Wernicke, aunque al hacer un proceso lingüístico es probable que todo el cerebro esté involucrado —casi indudablemente las áreas de la memoria participan en el proceso del lenguaje—, las áreas de Broca y de Wernicke se encuentran en la mayoría de los individuos en el hemisferio izquierdo; por su parte las áreas más involucradas en la lógica y actividades intelectuales se ubican principalmente en el córtex prefrontal, teniendo quizás las áreas temporales izquierdas gran importancia para procesos de análisis y síntesis como los que permiten hacer cálculos (matemáticos) estas áreas dotan al individuo de mayor capacidad de adaptación al medio, pero con procesos de aprendizaje mucho más dilatados, y como tal más dependientes de sus progenitores durante la etapa de cría.

Se llama neurogénesis a la producción, diferenciación y migración de nuevas neuronas en el sistema nervioso. Hasta los años 60 del siglo XX se creía que era imposible que esto ocurriera en la vida adulta y se consideraba que las mismas neuronas que existían en el momento del nacimiento perduraban hasta la muerte sin incorporación de nuevas unidades. En la segunda mitad del siglo XX se publicaron varios estudios que contradecían este antiguo dogma de la biología. Actualmente está comprobado que en el cerebro humano y de los mamíferos existen dos áreas de neurogénesis adulta, el hipocampo y la zona ubicada por debajo de los ventrículos laterales del cerebro. Se ha observado que determinados procesos de aprendizaje dependientes del hipocampo como el aprendizaje espacial en un laberinto actúan como estimulantes del proceso de neurogénesis.[23]​ Las células madre son las que dan origen a las nuevas neuronas, no obstante, la capacidad regenerativa del cerebro es muy escasa en comparación con otros tejidos del organismo.

La neuroplasticidad, es el proceso de modificación de la organización neuronal del encéfalo a resultas de la experiencia. El concepto se sustenta en la capacidad de modificación de la actividad de las neuronas, y como tal fue descrita por el neurocientífico polaco Jerzy Konorski.[32]​ La capacidad de modificar el número de sinapsis, de conexiones neurona-neurona, o incluso del número de células, da lugar a la neuroplasticidad. Históricamente, la neurociencia concebía durante el siglo XX un esquema estático de las estructuras más antiguas del encéfalo así como de la neocorteza. No obstante, hoy día se sabe que las conexiones encefálicas varían a lo largo de la vida del adulto, así como es también posible la generación de nuevas neuronas en áreas relacionadas con la gestión de la memoria (hipocampo, giro dentado).[33]​ Este dinamismo en algunas áreas del encéfalo del adulto responde a estímulos externos, e incluso alcanza a otras partes del encéfalo como el cerebelo.[34]

Tres grupos de animales, con algunas excepciones, tienen cerebros notablemente complejos: los artrópodos (por ejemplo, los insectos y los crustáceos), los cefalópodos (pulpos, calamares y moluscos similares) y los craniados (vertebrados principalmente). El cerebro de los artrópodos y los cefalópodos surge desde un par de nervios paralelos que se extienden a lo largo del cuerpo del animal. El cerebro de los artrópodos tiene grandes lóbulos ópticos por detrás de cada ojo para el procesado visual y un cerebro central con tres divisiones. En los insectos, el cerebro se puede dividir en cuatro partes: los lóbulos ópticos, que localizados tras los ojos, procesan los estímulos visuales; el protocerebro, que responde al olfato; el deutocerebro, que recibe la información de los receptores táctiles de la cabeza y las antenas; y el tritocerebro.

En los cefalópodos, el cerebro se divide en dos regiones separadas por el esófago del animal y conectadas por un par de lóbulos. Reciben el nombre de masa supraesofágica y masa subesofágica.

El cerebro de los craniados se desarrolla desde la sección anterior de un único tubo nervioso dorsal, que más tarde se convierte en la médula espinal, luego la médula espinal (siempre evolutiva y filogenétiamente) habría veccionado (usando la terminología de Piaget o evolucionado complejificándose y transformándose sucesivamente en el puente de Varolio y el tronco encefálico; ya en los peces y, principalmente, en los tetrápodos primitivos (anfibios, reptiles) habría surgido el "cerebro límbico" (sistema límbico). Los craniados tienen el cerebro protegido por los huesos del neurocráneo. Los vertebrados se caracterizan por el aumento de la complejidad del córtex cerebral a medida que se sube por los árboles filogenético y evolutivo. El gran número de circunvoluciones que aparecen en el cerebro de los mamíferos es característico de animales con cerebros avanzados. Estas convoluciones surgieron de la evolución para proporcionar más área superficial (con más materia gris) al cerebro: el volumen se mantiene constante a la vez que aumenta el número de neuronas. Por ello, es la superficie, y no el volumen (absoluto ni relativo), lo que condiciona el nivel de inteligencia de una especie. Este es un error muy común que debe ser tenido en cuenta. No obstante, si comparásemos dos cerebros de la misma especie, podríamos aproximar que hay más posibilidades que el cerebro más grande de los dos tenga una mayor superficie, aunque tampoco esto es definitorio de la cualidad intelectiva cognitiva, sino que se considera como factor clave para mayores capacidades intelectivas y cognitivas a la arquitectura del cerebro: por ejemplo los Homo neanderthalensis podían tener cerebros tan voluminosos o más que los del Homo sapiens actual, pero la arquitectura cortical de sus cerebros estaba más dedicada a controlar sus fuertes musculaturas, mientras que en los Homo sapiens las áreas corticales más desarrolladas se ubican en las zonas dedicadas al lenguaje simbólico, y las áreas prefrontales y frontales -en especial del hemisferio izquierdo- en donde se realizan las síntesis que dan por resultado procesos elaborados de reflexión, cognición e intelección.




Escribe un comentario o lo que quieras sobre Cerebro (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!