x
1

Número decimal



Se le denomina número decimal al número que tiene una representación decimal finita en el sistema de numeración decimal, y por tanto es un número racional con denominador de la forma 2n5m, donde m y n son enteros no negativos. Para el resto de números reales, esta representación puede ampliarse todavía más utilizando infinitas cifras decimales periódicas y no periódicas, de forma que también suele conocerse «informalmente» como número decimal a cualquier número real escrito así, sobre todo en los primeros cursos de la educación primaria.

Siguiendo con la denominación informal, extendida en muchos ámbitos de la educación, los números decimales son aquellos que poseen una parte decimal, en contraposición a los números enteros, que carecen de ella.[1]​ Así, un número x perteneciente a R escrito usando la representación decimal tiene la siguiente expresión:

donde a es un número entero cualquiera, llamado parte entera, separado por una coma o punto de la parte fraccionaria, en la cual cada uno de los n elementos di representa a un dígito: i = 1,2,…,n… y 0 ≤ di ≤ 9.[2][3]

La parte entera corresponde a un número entero (es decir que puede ser cero, o un número negativo); la parte decimal o fraccionaria, corresponde al valor decimal situado entre cero y uno.

En la lengua española en la actualidad se emplean básicamente tres formas de anotar un número con parte decimal, según el signo empleado como separador decimal:

El punto decimal: se emplea un punto(.) para separar la parte entera de la decimal, este método es el utilizado en las calculadoras electrónicas y en los ordenadores, rara vez se utiliza en la notación de cifras manualmente.

La coma decimal: se emplea una coma(,) como separador, esta forma es común en las publicaciones de habla hispana y se utiliza también en las notaciones manuales.

El apóstrofo decimal: el apóstrofo(') en ocasiones también llamado coma decimal es la forma usual de separar la parte decimal de un número en las notaciones a mano.

En todos los casos, las cifras decimales, no se separan en grupos con espacios en blanco u otro signo, sino que se escriben seguidas, sea cual sea el número de cifras decimales que forme la parte decimal del número en cuestión.

Si se toman en cuenta las cifras significativas, el número 0,080 es distinto del número 0,08, aunque representan la misma cantidad, el primero indica un grado de aproximación con tres cifras decimales...

Un número decimal admite una escritura formal (llamada la representación decimal) con base en series infinitas de fracciones decimales. Las fracciones decimales suelen expresarse sin denominador, con uso del separador decimal, es decir, como número decimal exacto.

Ejemplos:

Una fracción decimal no es necesariamente irreducible, pero todo número decimal finito puede escribirse como una fracción irreducible de la forma:

con b un entero primo relativo con 5 y 2, y m y p enteros naturales.

La representación decimal de los números reales (y por tanto de los racionales) se basa en el límite de series del tipo

La escritura de los números enteros (excepto el 0) y de los números decimales exactos no es única si se admiten secuencias recurrentes de 9.

Atendiendo a la definición, y llamando parte entera a la parte a la izquierda del separador decimal y parte decimal a la parte derecha del separador decimal, se puede construir la siguiente clasificación:[5]

Cabe destacar que, dado un número racional (exacto, periódico puro, o periódico mixto) expresado como número decimal, es posible obtener su fracción generatriz, es decir, aquella fracción cuyo valor es dicho número racional. Existe un procedimiento distinto para obtener la fracción generatriz de cada uno de los tres casos de un número racional expresado como número decimal.

Los números decimales cuya parte decimal tiene un número finito de cifras se denominan números decimales exactos. Se pueden escribir como fracción, y por tanto, pertenecen a un subconjunto de los números racionales.

Estos números tienen la particularidad de que su representación decimal no es única. Así, por ejemplo, el número racional 1/5 se puede representar mediante el número decimal exacto 0,2 o mediante el número decimal periódico 0,1999..., luego 1/5 = 0,2 = 0,1999...

Son los números decimales cuya parte decimal tiene un número infinito de cifras que se repiten siguiendo un patrón, llamado periodo. Si el patrón comienza inmediatamente después del separador decimal, se denominan números decimales periódicos puros; si el patrón comienza después del anteperíodo, se denominan números decimales periódicos mixtos. Estos números también pertenecen a un subconjunto de los números racionales, puesto que puede ser expresados en forma de fracción.

Son los números decimales en los que la parte decimal se repite periódicamente, inmediatamente después del separador decimal. La parte periódica se suele señalar usualmente con una línea horizontal superior. Por ejemplo:

Son los números decimales en cuya parte decimal hay una parte no periódica, denominada antiperiodo, y otra periódica. La parte periódica se suele señalar con una línea horizontal superior. Por ejemplo:

Al igual que los números decimales periódicos puros, los números decimales mixtos siempre pueden ser expresados en forma de [fracción]; en el caso del ejemplo, la fracción equivalente sería 1/6.

Los números decimales no periódicos son los que contienen una parte decimal infinita y que no se repite. Estos números corresponden al conjunto de los números irracionales, y no pueden ser representados por medio de una fracción.

Algunos de ellos son:

Puesto que los irracionales contienen infinitas cifras decimales y ningún período, es usual expresarlos en forma simbólica. Para efectuar cálculos numéricos, se toma el valor decimal numérico con el suficiente número de cifras decimales significativas para la obtención de datos con una determinada precisión, ya sea redondeando o truncando.

Por ejemplo, en el caso del número π, aplicando un truncado a sus primeras cifras, se obtiene:

En el sistema de numeración decimal (de manera general, en un sistema de numeración posicional de base racional), las fracciones irreducibles cuyo denominador contenga factores primos distintos de los que factorizan la base diez (es decir, 2 y 5), carecerán de representación finita, dándose recurrencia pura cuando no haya ningún factor primo en común con la base, y recurrencia mixta cuando haya al menos un factor primo en común con la base.



Escribe un comentario o lo que quieras sobre Número decimal (directo, no tienes que registrarte)


Comentarios
(de más nuevos a más antiguos)


Aún no hay comentarios, ¡deja el primero!